Showing posts with label Concept car. Show all posts
Showing posts with label Concept car. Show all posts

“I don’t know where I’m going from here, but I promise it won’t be boring”

Patryk Fournier
The quote is from the now late but great David Bowie and is extremely prophetic when you apply it to autonomous driving. Autonomous driving is very much still uncharted territory. Investments in roadway infrastructures are being made, consumer acceptance is trending positive, and, judging by the news and excitement from CES 2016, the future if anything will not be boring.

CES 2016 stretched into the weekend this year and ICYMI there was a lot of compelling media coverage of QNX and BlackBerry. Here’s a roundup of the most interesting coverage from the weekend:

ARS Technica: QNX demos new acoustic and ADAS technologies
The crew from ARSTechnica filmed a terrific demonstration of the QNX Acoustics Management Platform and the QNX Platform for ADAS. The demonstration highlights the power and versatility of the acoustics platform, including the QNX In-Car Communication module, which allows the driver to effortlessly speak to passengers in the back of the vehicle, over the roar of an engine revving at high speed. The demonstration also showcases how the QNX OS can support augmented reality and heads-up displays:

Huffington Post: CES 2016 Proves The Future Of Driverless Cars Is Promising
Huffington Post highlighted BlackBerry and QNX as key newsmakers for advancements in driverless cars. The article notes QNX’s automotive leadership: “The software is actually installed in 50 per cent of the world’s automotive infotainment systems including Audi, Volkswagen, Ford, GM and Chrysler.”

Crackberry: Inside the QNX Toyota Highlander at CES 2016
The folks at CrackBerry filmed a demonstration of our latest technology concept vehicle, based on a Toyota Highlander. The demo focuses on the QNX In-Car Communication acoustics module, which forms part of the recently launched QNX Acoustics Management Platform:



HERE 360: QNX and HERE bring to life a multi-screen experience in vehicles
A blog post from our ecosystem partner mentions HERE navigation and its use in the Toyota Highlander and Jeep Wrangler technology concept vehicles.

Why is software the key to bringing augmented reality to cars?

Guest post by Alex Leonov, marketing director, Luxoft Automotive.

While self-driving vehicles are gradually becoming a reality, more and more of today’s cars roll out from factories featuring advanced driver assistance systems (ADAS). We are quickly getting used to adaptive cruise control, blind spot monitoring, parking assistance, lane departure warning, and many other features that make driving safer and the driver’s job easier. Data from cameras, sensors, and V2X infrastructure feed into ADAS systems, increasing their accuracy and efficiency. These systems are important steps toward fully autonomous driving, but the ultimate responsibility for decision making still lies with a driver.

The more that cars become connected, the more the average driver can be bombarded by information while driving. “In 500 feet make a right turn.” “You have an incoming call from Christine.” “You have a new message on Facebook.” “You are over the speed limit.” This may not be so big of a distraction under normal conditions. But sometimes, when driving in hectic city traffic or in a snow storm, it is critical to keep eyes on the road, while still receiving essential information. The good news is, the technology is already there to remedy this.

Heads up for HUDs
Keeping the driver’s eyes on the road is a priority, and head-up displays (HUDs) can accomplish just that. They project alerts and navigation prompts right on the windshield. Analysts predict an explosive growth of HUDs with the market reaching close to US$100 billion by 2020. The bulk of HUDs are relatively simple combiners, but more advances in wide-field-of-view HUDs are coming soon.

Projecting alerts and navigation prompts directly on the windshield.
HUDs are perfect for presenting information in a convenient, natural way, and giving the driver a feeling of being in control. But HUDs are only as good as the information they display. That is why it is critical to have solid and reliable data processing and decision-making algorithms, running on a reliable OS, that can prioritize and filter data. The resulting alerts and prompts must be communicated to a driver in a clear, transparent way.

Computer vision, also known as machine vision, is a key to processing the endless flow of data. With its human-like image recognition ability, computer vision processes road scenes, and the system fuses data from multiple sources. Add in a natural representation of processing outcomes in the form of augmented reality, while tracking driver’s pupils, and you have a completely new level of driver’s experience — safe and intuitive.

Next-generation driving experience
At Luxoft, we’ve been working on making this experience a reality. The result is CVNAR, a computer vision and augmented reality solution. CVNAR is a powerful software framework containing mathematical algorithms that process a vast amount of road data in real time to generate intuitive prompts and alerts. CVNAR has built-in algorithms for road and pedestrian detection, vehicle recognition and tracking, lane detection, facade recognition and texture extraction, road sign recognition, and parking space search. It performs relative and absolute positioning and easily integrates with navigation, the map database, sensors, and other data sources. A unique feature of CVNAR is its extrapolation engine for latency avoidance.

Detecting and recognizing road signs, pedestrians, traffic lanes, gas stations, and other objects.
CVNAR works perfectly with LCD displays and smartglasses, but it is ultimately built for HUDs. Data from cameras, sensors, CAN, and navigation maps are fused and processed to create an extendable metadata output that describes all augmented objects. It takes a HUD and an eye-tracking camera to implement CVNAR in a vehicle. CVNAR will track the driver’s gaze and adjust the position of the augmented objects in the driver’s line of sight to make sure they don’t obstruct anything important — all in real time.

Alerting the driver to an empty parking spot.
This is not all that CVNAR can do. New car models come packed with infotainment features that take time to learn and memorize. The CVNAR-based smartphone app can help. It turns your smartphone into an interactive guide. Point your phone camera to your dashboard and use augmented prompts to find out more about a particular car function. It can work under the hood, too.

Era of a software-defined car
A modern car runs on code as much as it runs on gasoline (or a battery-powered electric motor). Today, it takes over 100 million lines of software code to get a premium car going, and the amount of software necessary keeps expanding. At Luxoft, we are excited about the car’s digital future, and we work every day to help bring it about, by developing cutting-edge automotive solutions for leading global vehicle manufacturers.

Offering a wide range of embedded software development and integration services for in-vehicle infotainment and telematics systems, digital instrument clusters, and head-up displays, Luxoft has developed User Experience (UX) and Human Machine Interface (HMI) technology for millions of vehicles on the road today. We push the envelope of technology in such areas as situation-aware HMI, computer vision and augmented reality, while Luxoft’s products, the Populus and Teora UX and HMI design tool chains, power the development of award-winning automotive HMIs and slash time to market.

Software holds the key to the future of cars. It is essential to creating a customized user experience in vehicles. With over-the-air updates, software offers unmatched flexibility and scalability. Finally, it takes safety to the next level with its ability to simulate human-like logic through complex algorithms.

You can view Luxoft’s CVNAR solution running on a QNX-based ADAS demo this week at CES, in the BlackBerry booth: LVCC North Hall, #325.



About Alex
Alex Leonov has been in the automotive and IT industry for over 18 years in various business development and marketing roles. Currently, Alex leads the global marketing efforts of Luxoft Automotive.

In the zone — a visit to the QNX concept garage

Guest post by QNX consultant and software designer Rob Krten.

How often have you heard the expression, “If it were easy to do, everyone would do it”? I’m constantly amazed at the things that QNX does with their concept cars. To me, a car is an inviolate object that must be touched only by the dealer (well, ok, I do top up the windshield wiper fluid and I once changed a battery). I don’t say that because I necessarily like to give the dealer money, but I just don’t want to break anything that’ll cost me more to get fixed properly later.

Pushing the envelope, however, means getting right in there and doing stuff. QNX engineers have done this for their technology concept cars — from replacing the mirrors with LCD screens, to getting right into the dash and rebuilding it, to adding cameras into the antenna fin on the roof. It’s nothing for them to rip out the center console and then look at all the wiring and go, “Huh, ok — so we need to lengthen this wire, add a shim here, move this piece,” and so on. They are fearless.

Redoing the dash of the QNX
reference vehicle.
Sometimes the “getting right in there” is physical; other times, it’s software based — such as making a new application that lives in the infotainment stack or that interfaces with a smartphone. Like a “Dude, where’s my car?” feature — when your Bluetooth phone unpairs with your car, the phone records the current GPS position. Later, when you’re looking for your car, your phone can recall this last stored GPS position — this must be where you left your car. Or even simple aids, such as a radio tuner that detects when you are losing an AM/FM signal and automatically switches to the corresponding digital station, so you can continue listening to your favorite station anywhere you drive.

Curious to see what the future holds, and to actually see some of this work in action, I invited myself down to the “garage” at QNX headquarters. It’s at the far end of the building, next to the cafeteria. The hallway is festooned with posters of previous QNX concept vehicles, highlighting success stories in 3-foot-high glory.

The day I visited, there were half a dozen people in the garage, and two vehicles: a Jeep and a Highlander (otherwise known as the QNX reference vehicle and QNX technology concept vehicle). The garage is a combination of software development lab, hardware development lab, simulation environment, and actual garage (but without the greasy/oily smell). I wanted to get a sense of what drives these people, what they do, and how they do it.

Digital analogs
No, not that kind of digital 
display. Credit: Peter Halasz
The first thing I learned was that there are no real limits. They have the freedom to innovate, without preconceived notions about how things should look. For example, a lead designer on the team (let’s call him Allan, because that’s his name), explained how they look at the controls in the car’s dash display area. In the era of analog, the speedometer had a certain look — it was usually a needle rotating about a central point, where the needle pointed to the speed you were going. In the very early era of digitization, car manufacturers changed this needle to a seven-segment numerical display.

Of course, this was a failure, because the human brain is basically analog; it likes to see nice, continuous changes for processes that are continuous — such as the speed that you’re going. Seven-segment digits change too “randomly”; they require higher-level cognitive functions to parse what the individual lights mean and convert that into digits, and then convert that into a “speed” (and then convert that into “too slow,” or “just right,” or “too fast,” and then, finally, convert that into “apply brake” or “press down on throttle”).

Allan pointed out that changing to a digital display didn’t necessarily mean that they have to slavishly follow the analog “physical” appearance (except do it on an LCD display), but that they were free to experiment with “fill concepts” — digitally controlled analogs to the actual controls. We likened it to the displays in military avionics, where the most important information becomes bigger as it increases in importance. Consider a fighter jet at 20,000 feet — the altitude isn’t nearly as important as it as at 300 feet. Therefore, at 20,000 feet, the part showing the altitude is small, and in a less prominent position than it is when the plane is at 300 feet. The same thing with your speedometer: if you’re doing the speed limit, it’s not as important to show your current speed (you’re most likely flowing with traffic) as it is when you’re 20 over (or under).

In this image from the new QNX technology concept vehicle, the digital instrument cluster is warning that a
forward collision is imminent, and that the driver is exceeding the speed limit by 12 mph. 

You could do the same thing with your fuel range — when you have a full tank, the indicator can be off in a corner somewhere. But as you start to run low, the indicator can get bigger or more prominent, to start nagging you to refuel. By having the displays all be “virtual” on a large LCD screen in the dash, the designers have incredible flexibility to create systems that present relevant information when required, and have it move out of the way when something more important comes along. (Come to think of it, this would be an awesome feature to have on turn-signal indicators — after you’ve kept your blinker on for more than 10 seconds, it would start to get bigger and brighter. Maybe then people would stop driving with their turn indicator permanently on.)

Collision avoided: The V2X command center
Also in the lab was a huge (3 by 5 foot) flat-panel touchscreen, mounted at an angle that’s aggressively unfriendly to coffee cups (probably for that very reason). It’s reminiscent of Star Trek’s main transporter control station, but it’s used to control and display the simulation environment’s V2V (vehicle to vehicle) and V2I (vehicle to infrastructure) data. It acts as a command center to control and reveal the innards of what’s going on in the simulation environment:



When I was there, we ran a vehicle collision avoidance scenario. Two vehicles (the Jeep and the Highlander, of course — they’re tied in to the system) were heading on a collision course (one was southbound and one was eastbound in a grid-style road system). Because they have V2V capabilities, both cars were aware of their impending doom. This showed up nicely on the V2V command center control panel — two cars heading towards each other, little red circles emanating from them indicating the realtime V2V “pings.” Of course, in plenty of time, the Jeep slowed down to avoid the collision (the actual brake lights even went on!). The speed, GPS coordinates, direction, and even what gear each vehicle was in were all shown on the master console. Towards the end of my visit I almost had Allan convinced to do another master control console for the OBDII connector so you could interact with all of the information in each car. What can I say? I like front panels. (I’m a reformed PDP-8 collector.)

The V2X command center, which makes its debut this week at CES, provides a bird’s eye view of several V2X traffic scenarios. In this example, V2X allows a vehicle (the Jeep) to detect that a vehicle up ahead (the Highlander) has braked suddenly, giving the Jeep plenty of time to slow down.

The engineers in the concept garage are “in the zone.” They’re working in an environment that encourages innovation. Watch and see what they produce:




About Rob
Rob is president of Iron Krten Consulting, which provides technical leadership services, from software leadership consulting through to security and embedded software products, development, training and contract services. Rob is also engaged by QNX Software Systems to write marketing and technical documentation. Visit Rob's website.

Video: Paving the way to an autonomous future

Lynn Gayowski
Lynn Gayowski
CES 2016 is now underway, and our kickoff to the year wouldn’t be complete without a behind-the-scenes look at the making of our new technology concept vehicle and updated reference vehicle.

The video below follows the journey of building our vehicles for CES 2016 and highlights the technologies we’re using to speed progress towards automated driving — and the list of tech that QNX covers is impressive! It includes advanced driver assistance systems (ADAS), V2X, and augmented reality, not to mention digital instrument clusters, in-car communication, and infotainment:



QNX Software Systems continues to innovate in automotive, with a vision for the evolution of automated driving and a trusted foundation for building reliable, adaptable systems. At risk of giving away the big finale, I think John Wall, head of QNX, sums up perfectly what QNX is on target for in the automotive industry: “We will dominate the cockpit of the car.” It’s a bold statement but we’re already amassing some imposing stats that back this up:

The simpler, the better: a first look at the new QNX technology concept vehicle

Bringing the KISS principle to the dashboard.

Paul Leroux
“From sensors to smartphones, the car is experiencing a massive influx of new technologies, and automakers must blend these in a way that is simple, helpful, and non-distracting.” That statement comes from a press release we issued a year ago, but it’s as true today as it was then — if not more so. The fact is, the car is undergoing a massive transformation as it becomes more connnected and more automated. And with that transformation comes higher volumes of data and greater system complexity.

But here’s the thing. From the driver’s perspective, this complexity doesn’t matter, nor should it matter. In fact, it can’t matter. Because the driver needs to stay focused on the most important thing: driving. (At least until fully automated driving becomes reality, at which point a nap might be in order!) Consequently, it’s the job of automakers and their suppliers to harness all these technologies in a simple, intuitive way that makes driving easier, safer, and more enjoyable. Specifically, they need to provide the driver with relevant, contextually sensitive information that is easy to consume, without causing distraction.

That is the challenge that the new QNX technology concept vehicle, based on a Toyota Highlander, sets out to explore.

So what are we waiting for? Let’s take a look! (And remember, you can click on any image to magnify it.)

The oh-so-glossy exterior
As with any QNX technology concept vehicle, it’s what’s inside that counts. But to signal that this is no ordinary Highlander, we gave the exterior a luxurious, brushed-metal finish that just screams to have its picture taken. So we obliged:



The integrated display that keeps you focused
When modifying the Highlander, simplicity was the watchword. So instead of equipping the vehicle with both a digital instrument cluster and a head unit, we created a “glass cockpit” that combines the functions of both systems, along with ADAS safety alerts, into one seamless display. Everything is presented directly in front of the driver, where it is easiest to see.

For instance, in the following scenario, the cockpit allows the driver to see several pieces of important information at a glance: a forward-collision warning, an alert that the car is exceeding the local speed limit by 12 mph, and turn-by-turn navigation:



Mind you, the cockpit can display much more information than you see here, including a tachometer, album art, incoming phone calls, and the current radio station. But to keep distraction to a minimum, it displays only the information that the driver currently requires, and no more. Because simplicity.

To further minimize distraction, the cockpit uses voice as the primary way to control the user interface, including control of media, navigation, and phone connectivity. As a result, drivers can access infotainment content while keeping their hands on the wheel and eyes on the road.

Thoughtful touches abound. For instance, the HERE Auto navigation software running in the cockpit interfaces with a HERE Auto Companion App running on a BlackBerry PRIV smartphone. So when the driver steps into the vehicle, navigation route information from the smartphone is transferred automatically to the vehicle, providing a continuous user experience. How cool is that?

Here’s a slightly different view of the cockpit, showing how it can display a photo of your destination — just the thing when you are driving to a location for the first time and would like visual confirmation of what it looks like:



Before I forget, here are some additional tech specs: the cockpit is built on the QNX CAR Platform for Infotainment, uses an interface based on Qt 5.5, integrates iHeartRadio, and runs on a Renesas R-Car H2 system-on-chip.

The acoustics feature that keeps you from shouting
The glass cockpit does a great job of keeping your eyes focused straight ahead. But what’s the use of that if, as a driver, you have to turn your head every time you want to speak to someone in the back seat? If you’ve ever struggled to hold a conversation in a car at highway speeds, especially in a larger vehicle, you know what I’m talking about.

QNX acoustics to the rescue! Earlier today, QNX Software Systems announced the QNX Acoustics Management Platform, a new solution that replaces the traditional piecemeal approach to in-car acoustics with a holistic model that enables faster-time-to-production and lower system costs. The platform comes with several innovative features, including QNX In-Car Communication (ICC) technology, which enhances the voice of the driver and relays it to infotainment loudspeakers in the rear of the car.

Long story short: instead of shouting or having to turn around to be heard, the driver can talk normally while keeping his or her eyes on the road. QNX ICC dynamically adapts to noise conditions and adds enhancement only when needed. Better yet, it allows automakers to leverage their existing handsfree telephony microphones and infotainment loudspeakers.



The reference vehicle that keeps evolving
Before you go, I also want to share some updates to the QNX reference vehicle, which is based on a Jeep Wrangler. Like the Highlander, the Jeep got a slick new exterior for CES 2016:



Since 2012, the Jeep has been our go-to vehicle for showcasing the latest capabilities of the QNX CAR Platform for Infotainment. But for over a year now, it has done double-duty as a concept vehicle, showing how QNX technology can help developers build next-generation instrument clusters and ADAS solutions.

Take, for example, the Jeep’s new instrument cluster, which makes its debut this week at CES. In addition to providing all the information that you’d expect, such as speed and RPM, it displays crosswalk notifications, forward collision warnings, speed limit warnings, and turn-by-turn navigation:



The QNX reference vehicle also includes a full-featured head unit that demonstrates the latest out-of-the-box capabilities of the QNX CAR Platform for Infotainment. For example, in this image, the head unit is displaying HERE Auto navigation:



Other features of the platform include:
  • A voice interface that uses natural language processing, making it easy to launch applications, play music, select radio stations, control volume, use the navigation system, and perform a variety of other tasks.
  • A new, easy-to-navigate UI based on Qt 5.5 that supports a variety of touch gestures, including tap, swipe, pinch, and zoom.
  • QNX acoustics technology that enables clear, easy-to-understand hands-free calls through advanced echo cancellation and noise reduction.
  • Cellular connectivity provided by the QNX Wireless Framework, which simplifies system design by managing the complexities of modem control on behalf of applications.
  • Flexible support for a variety of smartphone integration protocols.

Additional tech specs: The Jeep’s cluster runs on a Qualcomm Snapdragon 602A processor and its user interface was designed by our partner Rightware, using the Rightware Kanzi tool. The head unit, meanwhile, runs on an Intel Atom E3827 processor.

ADAS, augmented reality, V2X, IoT, and more
I have only scratched the surface of what BlackBerry and QNX Software Systems are demonstrating this week at CES 2016. There’s much more to see and experience, including a very cool V2X demonstration, IoT solutions for the automotive and transportation industries, as well as ADAS and augmented reality systems that integrate with the digital clusters described in this post. To learn more, read the press release that QNX issued today and stay tuned to this channel.


QNX announces new platforms for automated driving systems and in-car acoustics

Paul Leroux
Every year, at CES, QNX Software Systems showcases its immense range of solutions for infotainment systems, digital instrument clusters, telematics systems, advanced driving assistance systems (ADAS), and in-car acoustics. This year is no different. Well, actually… let me take that back. Because this year, we are also announcing two new and very important software platforms: one that can speed the development of automated driving systems, and one that can transform how acoustics applications are implemented in the car.

QNX Platform for ADAS
The automotive industry is at an inflection point, with autonomous and semiautonomous vehicles moving from theory to reality. The new QNX Platform for ADAS is designed to help drive this industry transformation. Based on our deep automotive experience and 30-year history in safety-critical systems, the platform can help automotive companies reduce the time and effort of building a full range of ADAS and automated driving applications:
  • from informational ADAS systems that provide a multi-camera, 360° surround view of the vehicle…
  • to sensor fusion systems that combine data from multiple sources such as cameras and radar…
  • to advanced high-performance systems that make control decisions in fully autonomous vehicles



Highlights of the platform include:
  • The QNX OS for Safety, a highly reliable OS pre-certified at all of the automotive safety integrity levels needed for automated driving systems.
  • An OS architecture that can simplify the integration of new sensor technologies and purpose-built ADAS processors.
  • Frameworks and reference implementations to speed the development of multi-camera vision systems and V2X applications (vehicle-to-vehicle and vehicle-to-infrastructure communications).
  • Pre-integrated partner technologies, including systems-on-chip (SoCs), vision algorithms, and V2X modules, to enable faster time-to-market for customers.

This week, at CES 2016, QNX will present several ADAS and V2X demonstrations, including:
  • Demos that show how QNX-based ADAS systems can perform realtime analysis of complex traffic scenarios to enhance driver awareness or enable various levels of automated driving.
  • QNX-based V2X technology that allows cars to “talk” to each other and to traffic infrastructure (e.g. traffic lights) to prevent collisions and improve traffic flow.

To learn more, check out the ADAS platform press release, as well as the press release that provides a full overview of our many CES demos — including, of course, the latest QNX technology concept vehicle!

QNX Acoustics Management Platform
It’s a lesser-known fact, but QNX is a leader in automotive acoustics — its software for handsfree voice communications has shipped in over 40 million automotive systems worldwide. This week, QNX is demonstrating once again why it is a leader in this space, with a new, holistic approach to managing acoustics in the car, the QNX Acoustics Management Platform (AMP):

  • Enables automakers to enhance the audio and acoustic experience for drivers and passengers, while reducing system costs and complexity.
  • Replaces the traditional piecemeal approach to in-car acoustics with a unified model: automakers can now manage all aspects of in-car acoustics efficiently and holistically, for easier integration and tuning, and for faster time-to-production.
  • Reduces hardware costs with a new, low-latency audio architecture that eliminates the need for dedicated digital signal processors or specialized external hardware.
  • Integrates a full suite of acoustics modules, including QNX Acoustics for Voice (for handsfree systems), QNX Acoustics for Engine Sound Enhancement, and the brand new QNX In-Car Communication (ICC).

For anyone who has struggled to hold a conversation in a car at highway speeds, QNX ICC enhances the voice of the driver and relays it to loudspeakers in the back of the vehicle. Instead of shouting or having to turn around to be heard, the driver can talk normally while keeping his or her eyes on the road. QNX will demonstrate ICC this week at CES, in its latest technology concept car, based on a Toyota Highlander.

Read the press release to learn more about QNX AMP.



The demo is in the details

A new video of the 2015 QNX technology concept car reveals some thoughtful touches.

Paul Leroux
QNX technology concept cars serve a variety of purposes. They demonstrate, for example, how the flexibility of QNX technology can help automakers deliver unique user experiences. They also serve as vehicles — pun fully intended — for showcasing our vision of connected driving. And they explore how thoughtful integration of new technologies can make driving easier and more enjoyable.

It is this thoughtfulness that impresses me most about the cars. It is also the hardest aspect to convey in words and pictures — nothing beats sitting inside one of the cars and experiencing the nuances first hand.

The minute you get behind the wheel, you realize that our concept team is exploring answers to a multitude of questions. For instance, how do you bring more content into a car, without distracting the driver? How do you take types of information previously distributed across two or more screens and integrate them on a single display? How do you combine information about local speed limits with speedometer readouts to promote better driving? How do you make familiar activities, such as using the car radio, simpler and more intuitive? And how much should a car’s UX rely on the touch gestures that have become commonplace on smartphones and tablets?

Okay, enough from me. To see how our 2015 technology concept car, based on a Maserati Quattroporte, addresses these and other questions, check out this new video with my esteemed colleague Justin Moon. Justin does a great job of highlighting many of the nuances I just alluded to:



In just over a month, QNX will unveil a brand new technology concept vehicle. What kinds of questions will it explore? What kinds of answers will it propose? We can’t say too much yet, but stay tuned to this channel and to our CES 2016 microsite.

A low-down look at the QNX concept cars

Paul Leroux
It’s that time of year again. The QNX concept team has set the wheels in motion and started work on a brand new technology concept car, to be unveiled at CES 2016.

The principle behind our technology concept cars is simple in theory, but challenging in practice: Take a stock production vehicle off the dealer’s lot, mod it with new software and hardware, and create user experiences that make driving more connected, more enjoyable, and, in some cases, even safer.

It’s always fun to guess what kind of car the team will modify. But the real story lies in what they do with it. In recent years, they’ve implemented cloud-based diagnostics, engine sound enhancement, traffic sign recognition, collision warnings, speed alerts, natural voice recognition — the list goes on. There’s always a surprise or two, and I intend to keep it that way, so no hints about the new car until CES. ;-)

In the meantime, here is a retrospective of QNX technology concept cars, past and present. It’s #WheelWednesday, so instead of the usual eye candy, I’ve chosen images to suit the occasion. Enjoy.

The Maserati Quattroporte GTS
From the beginning, our technology concept cars have demonstrated how the QNX platform helps auto companies create connected (and compelling) user experiences. The Maserati, however, goes one step further. It shows how QNX can enable a seamless blend of infotainment and ADAS technologies to simplify driving tasks, warn of possible collisions, and enhance driver awareness. The car can even recommend an appropriate speed for upcoming curves. How cool is that?




The Mercedes CLA 45 AMG
By their very nature, technology concept cars have a short shelf life. The Mercedes, however, has defied the odds. It debuted in January 2014, but is still alive and well in Europe, and is about to be whisked off to an event in Dubai. The car features a multi-modal user experience that blends touch, voice, physical buttons, and a multi-function controller, enabling users to interact naturally with infotainment functions. The instrument cluster isn’t too shabby, either. It will even warn you to ease off the gas if you exceed the local speed limit.




The Bentley Continental GT
I dubbed our Bentley the “ultimate show-me car,” partially because that’s exactly what people would ask when you put them behind the wheel. The digital cluster was drop-dead gorgeous, but the head unit was the true pièce de résistance — an elegantly curved 17” high-definition display based on TI’s optical touch technology. And did I mention? The car’s voice rec system spoke with an English accent.




The Porsche 911 Carrera
Have you ever talked to a Porsche? Well, in this case, you could — and it would even talk back. We outfitted our 911 with cloud-based voice recognition (so you could control the nav system using natural language) and text-to-speech (so you could listen to incoming BBMs, emails, and text messages). But my favorite feature was one-touch Bluetooth pairing: you simply touched your phone to an NFC reader in the center console and, hey presto, the phone and car were automatically paired,




The Chevrolet Corvette
I have a confession to make: The Corvette is the only QNX technology concept car that I got to drive around the block. For some unfathomable reason, they never let me drive another one. Which is weird, because I saw the repair bill, and it wasn’t that much. In any case, the Corvette served as the platform for the very first QNX technology concept car, back in 2010. It included a reconfigurable instrument cluster and a smartphone-connected head unit — features that would become slicker and more sophisticated in our subsequent concept vehicles. My favorite feature: the reskinnable UI.




The Jeep Wrangler
Officially, the Wrangler serves as the QNX reference vehicle, demonstrating what the QNX CAR Platform can do out of the box. But it also does double-duty as a concept vehicle, showing how the QNX platform can help developers build leading-edge ADAS solutions. My favorite features: in-dash collision warnings and a fast-booting backup display.



Well, there you have it. In just a few months’ time, we will have the honor of introducing you to a brand new QNX technology concept car. Any guesses as to what the wheels will look like?



If you liked this post, you may also be interested in... The lost concept car photos

The A to Z of QNX in cars

Over 26 fast facts, brought to you by the English alphabet

Paul Leroux
A is for Audi, one of the first automakers to use QNX technology in its vehicles. For more than 15 years, Audi has put its trust in QNX, in state-of-the-art systems like the Audi virtual cockpit and the MIB II modular infotainment system. A is also for QNX acoustics software, which enhances hands-free voice communications, eliminates “boom noise” created by fuel-saving techniques, and even helps automakers create signature sounds for their engines.

B is for Bentley, BMW, and Buick, and for their QNX-powered infotainment systems, which include BMW ConnectedDrive and Buick Intellilink.

C is for concept vehicles, including the latest QNX technology concept car, a modded Maserati Quattroporte GTS. The car integrates an array of technologies — including cameras, LiDAR, ultrasonic sensors, and specialized navigation engines — to show how QNX-based ADAS systems can simplify driving tasks, warn of possible collisions, and enhance driver awareness.

D is for the digital instrument clusters in vehicles from Alpha Romeo, Audi, GM, Jaguar, Mercedes-Benz, and Land Rover. These QNX-powered displays can reconfigure themselves on the fly, providing quick, convenient access to turn-by-turn directions, back-up video, incoming phone calls, and a host of other information.

E is for experience. QNX has served the automotive market since the late 1990s, working with car makers and tier one suppliers to create infotainment systems for tens of millions of vehicles. QNX has been at work in safety-critical industrial applications even longer — since the 1980s. This unique pedigree makes QNX perfectly suited for the next generation of in-vehicle systems, which will consolidate infotainment and safety-related functions on a single, cost-effective platform.

F is for Ford, which has chosen the QNX Neutrino OS for its new SYNC 3 infotainment system. The system will debut this summer in the 2016 Ford Escape and Ford Fiesta and will be one of the first infotainment systems to support both Apple CarPlay and Android Auto.

G is for GM and its QNX-based OnStar system, which is now available in almost all of the company’s vehicles. GM also uses QNX OS and acoustics technology in several infotainment systems, including the award-winning Chevy MyLink.

H is for hypervisor. By using the QNX Hypervisor, automotive developers can consolidate multiple OSs onto a single system-on-chip to reduce the cost, size, weight, and power consumption of their designs. The hypervisor can also simplify safety certification efforts by keeping safety-related and non-safety-related software components isolated from each other.

I is for the ISO 26262 standard for functional safety in road vehicles. The QNX OS for Automotive Safety has been certified to this standard, at Automotive Safety Integrity Level D — the highest level achievable. This certification makes the OS suitable for a wide variety of digital clusters, heads-up displays, and ADAS applications, from adaptive cruise control to pedestrian detection.

J is for Jeep. The QNX reference vehicle, based on a Jeep Wrangler, showcases what the QNX CAR Platform for Infotainment can do out of the box. In its latest iteration, the reference vehicle ups the ante with traffic sign detection, lane departure warnings, curve speed warnings, collision avoidance alerts, backup displays, and other ADAS features for enhancing driver awareness.

K is for Kia, which uses QNX technology in the infotainment and connectivity systems for several of its vehicles.

L is for LG, a long-time QNX customer that is using several QNX technologies to develop a new generation of infotainment systems, digital clusters, and ADAS systems for the global automotive market.

M is for Mercedes-Benz, which offers QNX-based infotainment systems in several of its vehicles, including the head unit and digital instrument cluster in the S Class Coupe. M is also for market share: according to IHS Automotive, QNX commands more than 50% of the infotainment software market.

N is for navigation. Thanks to the navigation framework in the QNX CAR Platform, automakers can integrate a rich variety of navigation solutions into their cars.

O is for the over-the-air update solution of the BlackBerry IoT Platform, which will help automakers cut maintenance costs, reduce expensive recalls, improve customer satisfaction, and keep vehicles up to date with compelling new features long after they have rolled off the assembly line.

P is for partnerships. When automotive companies choose QNX, they also tap into an incredibly rich partner ecosystem that provides infotainment apps, smartphone connectivity solutions, navigation engines, automotive processors, voice recognition engines, user interface tools, and other pre-integrated technologies. P is also for Porsche, which uses the QNX Neutrino OS in its head units, and for Porsche 911, which formed the basis of one of the first QNX concept cars.

Q is for the QNX CAR Platform for Infotainment, a comprehensive solution that pre-integrates partner technologies with road-proven QNX software to jump-start customer projects.

R is for the reliability that QNX OS technology brings to advanced driver assistance systems and other safety-related components in the vehicle — the same technology proven in space shuttles, nuclear plants, and medical devices.

S is for the security expertise and solutions that Certicom and QNX bring to automotive systems. S is also for the advanced smartphone integration of the QNX CAR Platform, which allows infotainment systems to support the latest brought-in solutions, such as Apple CarPlay and Android Auto. S is also for the scalability of QNX technology, which allows customers to use a single software platform across all of their product lines, from high-volume economy vehicles to luxury models. And last, but not least, S is for the more than sixty million vehicles worldwide that use QNX technology. (S sure is a busy letter!)

T is for Toyota, which uses QNX technology in infotainment systems like Entune and Touch ‘n’ Go. T is also for tools: using the QNX Momentics Tool Suite, automotive developers can root out subtle bugs and optimize the performance of their sophisticated, multi-core systems.

U is for unified user interface. With QNX, automotive developers can choose from a rich set of user interface technologies, including Qt, HTML5, OpenGL ES, and third-party toolkits. Better yet, they can blend these various technologies on the same display, at the same time, for the ultimate in design flexibility.

V is for the Volkswagen vehicles, including the Touareg, Passat, Polo, Golf, and Golf GTI, that use the QNX Neutrino OS and QNX middleware technology in their infotainment systems.

W is for the QNX Wireless Framework, which brings smartphone-caliber connectivity to infotainment systems, telematics units, and a variety of other embedded devices. The framework abstracts the complexity of modem control, enabling developers to upgrade cellular and Wi-Fi hardware without having to rewrite their applications.

X, Y, and Z are for the 3D navigation solutions and the 3D APIs and partner toolkits supported by the QNX CAR Platform. I could show you many examples of these solutions in action, but my personal favorite is the QNX technology concept car based on a Bentley Continental GT. Because awesome.

Before you go... This post mentions a number of automotive customers, but please don’t consider it a complete list. I would have gotten them all in, but I ran out of letters!

Concept Car mit QNX-Technologie feiert seinen Auftakt in Europa

Ein Gastbeitrag von Matthias Stumpf, Vertriebsleiter Automotive EMEA, QNX Software Systems
(Guest post from Matthias Stumpf, manager of automotive sales EMEA, QNX Software Systems)


Nachdem der Mercedes-Benz CLA45 AMG, ein mit QNX-Technologie ausgestattetes Concept Car, in Nordamerika für Schlagzeilen gesorgt hat, wagt es nun für seine Europa-Tour den Sprung über den großen Teich. Startschuss ist auf dem Automobile Elektronik Kongress am 23. und 24. Juni in Ludwigsburg, wo das Auto zum ersten Mal in Europa ausgestellt wird.

Alle die den Mercedes in Aktion sehen wollen, sollten im Hauptfoyer des Kongresses vorbeischauen. Dort wird gezeigt, wie der Fahrer völlig natürlich und intuitiv mit dem im Auto verbauten Infotainment-System und den digitalen Instrumenten-Gruppen interagieren kann.

Eine extrabreite Head Unit
Das Auto verfügt über eine extrabreite Head Unit, die Fahrer und Beifahrer mit Hilfe detaillierter Grafiken und über ein durchgehendes 7 Zoll bis 21 Zoll großes Interface mit Informationen versorgt. Dank des nutzerorientierten Designs kann das Infotainment-System optional über den Touchscreen, physische Knöpfe, den Multifunktions-Controller oder via Sprachbefehl gesteuert werden. Das System basiert auf der QNX CAR Platform for Infotainment, einem umfangreichen Ökosystem, das bereits QNX-Software-Systems-Technologien und zahlreiche Partner integriert hat:

QNX 2014 technology concept car - infotainment system

Konfigurierbares Instrumente-Cluster
Das digitale Instrumente-Cluster kann dynamisch angepasst werden und zeigt Wegbeschreibungen in Echtzeit, eingehende Telefonanrufe, Videos der Front- und Heck-Bordkameras, Drehzahl- und Geschwindigkeitsmesser sowie weitere virtuelle Instrumente an. Via Tastendruck auf dem Lenkrad werden sogar empfangene Textnachrichten vorgelesen; so behält der Fahrer seine Augen auf der Straße:

QNX 2014 technology concept car - cluster

Darüber hinaus können mit der “virtuellen Bordmechanik” des Clusters Statusinformationen wie Reifendruck, Bremsverschleiß sowie Treibstoff-, Öl- und Scheibenwaschwasserstand abgerufen werden:



Wenn Sie an weiteren Informationen über die zahlreichen Features des Concept Cars interessiert sind, lesen Sie hier und hier unsere vorangegangenen Blogbeiträge.

Wir freuen uns, Sie in Ludwigsburg begrüßen zu dürfen! Alle weiteren Termine der Europa-Tour des Concept Cars erhalten Sie hier auf unserem Blog.

Reimagining digital instrument cluster design

Guest post by Jason Clarke, vice president, sales and marketing, Crank Software

Technology in cars has been advancing at an impressive rate. From rich infotainment systems to intelligent digital instrument clusters, today’s automobile has evolved to become a cool reality that many of us only envisioned as a possibility a few years ago. But while the technology has changed, the driver has stayed the same. Drivers still need to get from point A to point B as efficiently and safely as possible, while perhaps listening to some favorite road trip tunes on the journey.

What has changed for drivers is the sheer volume of information that is available while behind the wheel. Today’s vehicle can tell you more than the fact that you are desperately in need of finding the nearest gas station. It’s smart enough to let you know when you are getting close to hitting the neighbor’s garbage can… again. It can alert you to traffic pattern changes, road hazards, inclement weather, your affinity to your lead foot, and to the fact that your spouse is texting you to remind you to pick up the dry cleaning. It can also effortlessly re-route you back to the dry cleaners after you realize you’ve forgotten, providing you with helpful turn-by-turn navigation in your instrument cluster.

That’s a lot of information. And it’s only a small slice of what’s available to today’s driver. The simplicity, reliability, and safety capabilities of platforms by QNX Software Systems make it a possible to have a wide range of technologies and features in a single vehicle, offering up an abundance of data for driver consumption.

So, how do we make this data useful for drivers? What do we need to consider when designing the UI for digital instrument clusters?

How much information does the driver REALLY need?
Information should be helpful, not intrusive or distracting from the task at hand — driving. The point of having more data available to drivers isn’t to show it all at the same time. That’s visually noisy and complex. Complex isn’t better; context is better. Turn-by-turn information can be displayed in the instrument cluster, based on communication from the navigation system. Video of the car’s surroundings can be displayed when parking assist services are engaged. Advanced Driver Assistance Systems (ADAS) can present in the cluster alerts to immediate hazards and objects.

Using tools that support rapid prototyping of design scenarios empowers teams to deliver the best user experience possible, serving up only the most relevant information. Using Storyboard Suite from Crank Software, teams can quickly cycle through design prototypes and perform testing on real hardware, focusing on the needs of the driver.

How do we best visualize the data?
It’s critical that drivers see and interpret displayed information as easily and quickly as possible. Clear visual representation of data is required, so it’s important to keep design considerations at the forefront in the development process. This is where the graphic designer comes in.

Crank Software’s Storyboard Suite allows the graphic designer to be integrated into the development process from concept to final HMI delivery, working in parallel with the engineers to ensure that fine details and subtle design nuances aren’t lost. With Storyboard Suite, designers don’t hand over a mockup to a developer to visually represent with code and then walk away. As the graphics change and evolve to satisfy usability requirements, the designer stays engaged throughout the entire process, helping to deliver a polished HMI.

Automotive cluster designed and developed with Crank Software Storyboard Suite, running on QNX Neutrino OS

Can we respond quickly to design change?
Remaining focused on the usability of the end design is critical to ensuring the safest driving experience. Delivering a high-performance, user-centric HMI requires testing, design refinements, retesting, and even further changes. This isn’t a linear process. While iterative process is important, it’s often cost prohibitive because it can introduce lengthy redesign cycles. Storyboard Suite provides teams the functionality to prototype and iterate through designs easily, using features such as Photoshop Re-import to quickly evaluate design changes on hardware and shorten development cycles. In addition, support for collaboration enables teams to share design and development work, thereby reducing the load on individuals and further optimizing time and resources.

A faster development process coupled with a user-focused end design is the key to delivering a highly usable and safe digital instrument cluster to market on schedule and within budget.

A digital instrument cluster developed with Storyboard Suite will be on display at TU-Automotive Detroit in the QNX Software Systems booth, #C92, and the Crank Software booth, #C113. Check out a previous Crank Software and QNX Software Systems collaboration with a Storyboard Suite UI in a QNX technology concept car.


Jason Clarke has over 15 years of experience in the embedded industry, in roles that span development, sales, and marketing. Jason heads up Crank Software’s marketing and sales initiatives.

Visit Crank Software here.


Top 5 challenges of digital instrument clusters

Guest post by Olli Laiho, director, product marketing, Rightware

Digitalization of the modern car is progressing at breakneck speed, with research showing that over 70% of cars will ship with a digital display in the cluster by 2017 (Automotive User Interfaces 2014, IHS Automotive, 2014). While digital user interfaces have long been available in the center stack of the vehicle, they are now quickly making their way into the heart of the car’s dashboard — the instrument cluster. However, the migration from traditional, physical instrumentation to the digital Human Machine Interface (HMI) is posing various challenges for auto manufacturers. Here are the top five challenges Rightware is seeing today.

1. Deliver a winning user experience
With the digital cluster, auto manufacturers must deliver a user experience that makes consumers insist on having a digital cluster and makes them think they could never live without one. The car companies need to increase their investment in digital user experience design in order to provide consumers with a digital driving experience they’ll love.

User experience is all about... the user! With the help of target group research, auto manufacturers need to find the key use cases and features for different buyer profiles. While more senior buyers appreciate a digital design featuring traditional big gauges and needles combined with maps in the middle, millennials long for a cluster that connects them with their personal data at the right time, while having a modern look and feel with a real wow effect.

QNX Software Systems' technology concept car 2014 based on the Mercedes CLA 45, featuring a cluster created with Rightware Kanzi®

2. Find the right design-cost-performance combination
In creating HMIs such as digital clusters, finding the right balance among design, cost, and performance becomes essential. It’s all about:

Design — Delivering a stunning user experience
Cost — Minimizing software development, hardware, and maintenance costs
Performance — Choosing the right OS, System-on-a-Chip (SoC), etc.

Automotive user interface designers need to learn to work with the capabilities of the hardware and software platform of the cluster in mind. Designers need to create user experiences that strengthen the auto manufacturer’s brand image while still being possible to implement with the chosen tool chain and hardware and software platforms.

Choosing the SoC that can deliver the best user experience at the best price is essential. While proper automotive SoC benchmarking tools are not yet available in the market, auto manufacturers need to invest in their own measurements and trials for finding the right cost/performance level of the SoC for their project.

QNX Software Systems' technology concept car 2015 based on the Maserati Quattroporte, showing
system diagnostics in the cluster created with Rightware Kanzi

3. Reduce development time
Consumers have become accustomed to having access to the latest technology and innovations on their mobile devices. That expectation has now extended to HMIs in the car.

To meet consumer expectations, the automotive industry must shorten the development time of new vehicles and determine how to provide compelling software upgrades during the car’s lifecycle. Digital clusters need to be designed for upgradeability from the ground up. Through upgrades, the cluster should provide the necessary access to new app platforms and innovations. Streamlining the software development process and choosing the right tool chain for HMI development is key to creating HMIs faster and with more valuable features.

4. Accelerate update cycles

Consumers utilize their mobile devices daily and have learned to expect a constant update cycle that brings new features and enhancements to their device. This “update drug” has created a trend where the customer is waiting for the next update to their beloved devices — a customer that is always looking for more.

Until today, there have been few tangible software upgrades for a car during its lifetime. As an example, when you pick up your car from service, you’ll often see a line on the bill that says “software updates.” Leaving the garage, you can discern no difference in how the car behaves.

Auto manufacturers need a plan for providing consumers with constant software upgrades that give them value during the entire lifecycle of their vehicle. Upgrading the digital cluster doesn’t have to mean that it should look like next year’s model, but the upgrade should provide consumers with either features that add value or a clear, visual difference that they understand is an upgrade. Increasing the upgradeability of HMIs in the car will be a major opportunity for improving customer retention.

5. Establish design ownership
As automotive devices evolve into the digital age, they will also transform the way auto manufacturers create designs for their customers. Unlike a mobile device, HMI design will be specific not only to the manufacturer’s brand, but also to that model. Digital screens will give automotive UI designers the flexibility to create unique designs, and they will need full control of the UI framework to be able to deliver these stunning user experiences.

Consumers are increasingly connected 24/7 to ecosystems from companies such as Google and Apple. Due to the increase in consumer demand, these technologies are also making their way into the car cockpit in various forms — from simple content integration (SMS, mail, media) to sandboxed but comprehensive solutions like Apple CarPlay and Android Auto.

Automotive companies must invest in creating branded digital user experiences that can rival and exceed any third-party designs in the vehicle. They should invest in a UI solution and operating system that can deliver the design as intended.

Audi Q7 Virtual Cockpit, running on QNX Neutrino OS, featuring a cluster created with Rightware Kanzi



Visit Rightware at TU-Automotive Detroit (booth #C115) to witness next-generation HMI demos built with Kanzi and a first chance to see a brand new Kanzi product. You’ll also find Rightware’s technology in the QNX booth (#C92).



Olli Laiho has been working in software development for over 15 years. An avid car enthusiast, Olli heads Rightware’s global marketing activities.

The Rightware Kanzi UI Solution and the QNX Neutrino OS can already be found together in several vehicles, including the Audi TT, Audi Q7, and the Audi R8. Rightware has created several digital clusters for QNX technology concept cars, including the 2014 Mercedes CLA 45 and the 2015 Maserati Quattroporte.

Visit Rightware here.


Automotive technology

Automotive

Labels

1904 Columbus 1940 Ford 1964 Worlds Fair 1969 Camaro 1969 Dodge Coronet Super Bee 2014 2016 Sales 2017 The Bad 8 2017 The Good 12 3 wheeler 4 G 407 407 ex2 427 AC Cobra 440 six pack 442 4x 4x4 55 Chevy 57 Chevy 5th wheel AAR abandoned abs abuse by law enforcement AC Cobra Acadian accessories accident Acoustic processing Active noise control (ANC) Acura Acura Reviews adaptive cruise control ADAS Adobe AIR ads adventurers advertising aerodynamics Aircraft engines airlines airplane Airstream Alfa Alfa Romeo Alfa-Romeo All Cars Rankings All SUV Rankings All Vehicle Rankings Alpina Alpine AMBR winner ambulance AMC America's greatest photographers American LaFrance amphib AMX AMX-3 Andorra Andrew Poliak Android Andy Gryc anti lock braking system App World Apps Arab-Supercar area controller Ariel-Nomad ARM-based devices art Art Arfons Art Deco artist Asset management system Aston Martin Aston-Martin atv auction Audi Audi Reviews audio Augmented reality Austin Austin Healey Australia Austria Auto Accident Attorney auto car donate auto car donation Auto Donate Auto Donation California Auto hobby books Auto Sales By Brand auto show Auto Story in Pictures Wednesday auto taxi Autocar automobile automobile donation AUTOMOBILE INSURANCE automobile parts automobile safety system automobule donate Autonomous cars Awards awesome B 29 B 52 BAIC Baja racing Baker banners barn find barn finds barnfind barnfinds Barracuda Barris barum BatBerry Batman Batteries battery beautiful engine Beautiful paint before and after Belgium Bello's belly tanker Bentley Best Sellers Best Selling American Cars Best Selling Cars Best Selling Luxury Best Selling SUVs Best Selling Trucks Best Selling Vehicles bicycle bicycles Big 3 Swap Meet big wheel bike messengers bike rack biofuel biography BlackBerry BlackBerry Radar BlackBerry-QNX blink code blink code checkup blink code error blink code troubleshooting Blog blogs BMW BMW Audi Mercedes Benz Daimler jeep GM toyota Chrysler VW volkswagon nissan infiniti ford unique rare Bntley boardtrack Boats boattail Bonneville book review bookmobile Boss 302 Boss 429 brake brakes braking system Brand Marketshare brass era breedlove Brewster Brian Salisbury Bricklin bridge British Britten brochure Bugatti Buick Bulgaria burnout bus Buses buying selling cash tips money advice BYD c C-type Jag Cadillac Cadillac Reviews Camaro Can Am Canada Canada 2016 Sales Canada All Cars Rankings Canada All SUV Rankings Canada All Vehicle Rankings Canada Auto Sales Canada Auto Sales By Brand Canada Best Sellers Canada Compact Car Sales Canada December 2016 Canada Entry Luxury Car Sales Canada February 2017 Canada January 2017 Canada Large Car Sales Canada Large Luxury Car Sales Canada Large Luxury SUV Sales Canada Large SUV Sales Canada March 2017 Canada Midsize Car Sales Canada Midsize Luxury Car Sales Canada Midsize Luxury SUV Sales Canada Midsize SUV Sales Canada Minivan Sales Canada November 2016 Canada October 2016 Canada Premium Sporty Car Sales Canada September 2016 Canada Small Luxury SUV Sales Canada Small SUV Sales Canada Sporty Car Sales Canada Truck Sales Canada Van Sales Canada Worst Sellers car care car chase scene car clubs car collections car collectors Car Donate car donate california car donation Car Donations California Car or the Future car wash carbs carrozzeria cart caterpillar tracked vehicle CCS celebrities celebrity Certicom CES CESA 2012 CESA 3.0 Chademo Challenger Chaparral Charger Charity Charity auction charity car donation Charity Car Donation Program Charity Car With Your Credit Card cheating Checker Chery Chevelle Chevrolet Chevrolet Reviews Chevy 2 China chopper Christian Sobottka Christie Christmas Chrysler Citroen Citroën classics cleaning clip Cloud connectivity CO2 Cobra Cobra Daytona Coupe Cobra Mustang Cobra Torino COE Cogent collection collector College Colombia commercial common rail direct injection Compact Car Sales companies comparison compliment components components of anti-lock braking system concept Concept car Concept team Connected Car construction Consumer Electronics Show consumers Contest convertible Coronet Corvair corvette Corvettes Costa Rica coupe coventry cragar crash crde crdi Croatia Crosley crossover Cruise 4 Kids crypto cryptography CTS Cuda Cunningham Curtiss Aerocar Custom customer satisfaction cutaway display cycle car Cyclone Cyprus Czech Republic dacia Daihatsu Dan Gurney dart Datsun Daytona ddis DDS dealers Dealership Dean Martin December 2016 Degree delivery truck Delorean Delphi Demon Denmark Derek Kuhn design deuce devices Dick Landy dicor Digital instrument clusters digital spark ignition Diner with car theme direction injection Disney display diy Dodge domain controller Donate Donate A Car Tax Deduction Donate Automobile To Charity Donate Car To Charity Tax Deduction Donate Vehicles To Charity donation donation auto car donation vehicles to charity Doug Newcomb Drag racing drag strip Dragonsnake dragsters DREAM drifting Driven Driver distraction driving assistance drunk driver DS dtsi dual carbs dual engined dualie Ducati dump truck dvla E-type Jag ECC economy ECU Ecuador electric electric car Electric cars electromagnetic brake Elliptic Curve Cryptography EMF Emil Dautovic Endurance racing engine engine accessories Engine sound enhancement engines Entry Luxury Car Sales enzo Erskine Essex estate Estonia etc EUCAR Europe EV Business Case Evel Knievel event experience experiment extreme sports video F1 Factor-Aurelio Factory lightweight Factory race car Fairlane Falcon Fast boot Fast-Charging FCA FCEV February 2017 Ferrari Fiat Fiat Botafogo finance Finland fips fire engine fire fighting fire trucks Firebird Firestone firetrucks Fisker flamejob fleet management Ford ford escort Ford Reviews Fordson tractor Forecasts FOTA found around the neighborhood France Franklin Free Car Donation Freescale french fuel fuel injection fuel injection system Fuel Tanker fuel-cell fun Funny car Futurliner gadgets Galpin Ford game garage garner gas mileage gas stations Gasser Gauges GCBC Awards GCBC Most Popular Geely Gene Winfield General Motors German Germany give your car to charity GM GM MyLink GNX Go cart good news Goodwood Goodyear gourmet food vans GPU Graham Gran Prix Grand National Roadster Show 2017 Grand Sport Corvette Graph Great Wall Motors Greece green Green car Gremlin GT GT 350 GT 40 GT 500 gt40 GTO GTX Gulf race car Gullwing Guy Martin Hands-free systems Harley Harley Davidson hauler Hawaii helicopter hemi hemmings Hennessey Henry J hero Hertz hire Hispano-Suiza historical history HMIs Holden Hollywood Holman Moody Honda Honda Reviews Honda Sales Hong Kong Hood ornaments hood scoops Horizon 2020 horse carriage horse wagon host blog info about auto Hot rods Hot Wheels Housekeeping How To Donate How To Donate A Car For Tax Deduction How To Donate Car To Charity how to donation car to charity HRM HTML5 Hudson Hummer humor humour Humvee Hungary Hupmobile Hurst Hurst SC Rambler hybrid Hybrid cars hydrogen hypervisor Hyundai Hyundai Reviews Ian Roussel Iceland ID4 Car ignition IIoT immitation Impala india Indian Indianapolis industry news infiniti Infiniti Reviews Info infographic informative Infotainment Injury Lawyer Innotrans innova innovation innovative instrument panel insurance intake Intel interior International Harvester Internet of Things Internet radio invitation IoT Ireland iris iris details iris engine details iris technical Isetta Iskenderian Isky Isle of Man ISO 26262 Israel issues Isuzu Italian Italy ITS ITU IVI Jaguar January 2017 Japan Japanese Javelin Jay Leno Jean-François Tarabbia Jeep Jeep Wrangler JLR John D'Agostino John Deere John Wall Justin Moon jv Kaivan Karimi Kandi kawasaki Ken Block Kerry Johnson Kia kids Kim Cairns Kissel Kombi Kroy Zeviar Kurtis La Carrera Panamerica lace paint Lamborghini Lamborghini Revuelto Lancia Land Cruiser Land Rover Land Rover Sales land speed record holder Land-Rover Large Car Sales Large Luxury Car Sales Large Luxury SUV Sales Large SUV Sales Larry Wood LaSalle Latvia launch law enforcement lawnmower laws Le Mans legends Leno Lexus license plates Lidar Life Insurance limited Lincoln Lincoln MKZ Linda Campbell Linda Vaughn links lists Lithuania live Loans Locomobile logging train logging trucks Lola London to Brighton Looking for EV's Los Angeles Lotus lowrider LSR Luxembourg luxury Lyft Lynn Gayowski Mach 1 machine shop Mack Mad Max magazine magazines magic iris mags Malaysia March 2017 Mario Andretti Mark Donohue marketing Marketshare Maserati Matt Watson Maverick Mazda Mazda Reviews MB McLaren mechanic Megan Alink meme Memory Lane Men Micro Mercedes Mercedes Benz Mercedes-Benz Mercer Cobra Mercury Metallica Metro Mexico Miata microkernal Midsize Car Sales Midsize Luxury Car Sales Midsize Luxury SUV Sales Midsize SUV Sales Military Miller race car mini mini bike miniature Minivan Sales MirrorLink mission-critical Mitsubishi Miura MMI Mobile connectivity Mobile World Congress mod top Model Model A model T modifications Momo Monaco Monster Truck Moon Moon eyes Mopar Mopar parts Morgan Morocco morons mot Motor shows motor wheel Motorcycle Motorcycles motorhomes Mouse movie movies mpv Multicore Munsters Muntz muscle cars musclecars museum music video Mustang NAIAS Nancy Young Nascar Nash Navigation naza neglec neglected Netherlands new tv show New York New Zealand news ni Nissan Nissan Reviews Nomad Norway nos nose art Nova November 2016 Nurburgring Object Management group October 2016 off roading offenhauser Oldsmobile OMG Online College OnStar Opel Open source Open standards OpenGL ES option orders original owner Ormond Beach land speed racing pace car Packard Pagani Paige pamphlet panel paint Paris to Peking race parking parts Patryk Fournier Paul Leroux Paul Newman Paul Sykes Pebble Beach pedal car perodua personal Peter McCarthy petrol petroliana Peugeot Phoenix Injury photographer photography pics pictures Pierce Arrow Pike's Peak Pinin Farina pinstriping Pit row Pits Pixar PKI plank road PlayBook Plymouth Point Grey Camera Poland pole wheel police Polysynch Pontiac Porsche Porsche 917 Porsche Carrera Portugal POSIX pre 1930's gas station Premium Sporty Car Sales President of the USA Preview prices prius project prooject Proton prototype PSA Peugeot Citroen public key cryptography Pullman QNX QNX CAR QNX Garage QNX OS Qualcomm quiz quote race cars racing racing. LSR Radar radio Raid Data rail railcars railroad ralliart Rally rallying Ram range rover rant Rapid Transit System advertsing rare Real time Innovations recall recommended shop record setter Red Bull Sports Reference vehicle Reliability Rémi Bastien RemoteLink Renault Renesas Renntransporter rentals REO repair reports resarch research restoration restoration shop review Richard Bishop Ridler Award Winner rims river bank cars road and highway Road Runner roadster Robot OS Robot wars Roewe Roger Penske Rolls Royce Romain Saha Romania ROS Roth RTI RTI Connext rumble seat Russia Ruxton RV Safety Safety systems safety-certified sales Sales By Model Sales Stats samba sampan Saoutchik Satellite satnav Scaglietti scallops Scat Pack SCCA racecar School bus sci-fi Scooter SCORE Baja trucks Scott Pennock Scout sculpture Security sedan segway semi sensor extension cable sensor fusion September 2016 service service repair automotive vehicle car buying selling mission statement blog free broker shay drive locomotive Shelby shifter shop Show cars sidecars signs skateboarding Skoda slicks slingshot dragster Slovakia Slovenia Small Luxury SUV Sales Small SUV Sales Smart Smartphones snow machines snowmobile Soapbox South Africa South Korea Sox and Martin Spain spare tire spark ignition spark plug spark plugs Spatial auditory displays special edition Mustangs Speech interfaces speed limit Speed Record speedfest speedster sports car sports cars Sporty Car Sales spy shots spyker Sri Lanka SS SS/AH Stagecoach Stanley Station Wagon steam locomotive steam powered steam shovel steampunk steering wheel Steve McQueen Stig Stirling Moss Stolen streamliner street cars Street Van studebaker stunt stunts Stutz Stutz Blackhawk Subaru Sunbeam Super Bee Super Stock Superbird Supercar supercharger survey suv Suzuki Sweden Swift Switzerland System development Life Cycle Tablets Tach takeover tank tata tata magic iris tata vehicles tax Tax Deduction For Car Donation taxi taxi cab TCS tdi teardrop technical technology Telematics Telematics Detroit Telematics Update tempo Tempo Matador Terlingua Racing Team Terry Staycer Tesla test testdrive Texas Instruments The Race Of Gentlemen Thomas Bloor thoughts three wheeler Thunderbird ticket Tiger Tim Neil Tina Jeffrey tips tires tool tool kit toolbox tools Top Gear top ten list Torino tour bus tourbus towtruck Toyota Toyota Entune Toyota Reviews tractor trailer train train wreck trains Trans Am transmission Transporter Traval trike Triumph trivia trolley Troy Trepanier truck Truck Sales trucking trucks Tucker turbocharger turbojet turbonique Turkey tv tv cars twin spark type 1 type 2 tyres UAE Uber UK UK Auto Sales UK Best Sellers uk market Ukraine Unimog unique University of Waterloo Unser unusual unveil upgrade US US 2016 Sales US All Cars Rankings US All SUV Rankings US All Vehicle Rankings US Auto Sales US Auto Sales By Brand US Best Sellers US Compact Car Sales US December 2016 US Entry Luxury Car Sales US February 2017 US January 2017 US Large Car Sales US Large Luxury Car Sales US Large Luxury SUV Sales US Large SUV Sales US March 2017 US Midsize Car Sales US Midsize Luxury Car Sales US Midsize Luxury SUV Sales US Midsize SUV Sales US Minivan Sales US Navy US November 2016 US October 2016 US September 2016 US Small Luxury SUV Sales US Small SUV Sales US Sporty Car Sales US Truck Sales US US Auto Sales US Van Sales US Worst Sellers USA used cars V2X van Van Sales vauxhall VeDeCoM Vehicle Donation California Velodyne Vespa Video vintage vintage racing Virtual mechanic Virtualization VOIP Guide Volkswagen Volkswagen Reviews Volkswagen Sales Volvo Von Dutch vote VW VW bug W3C wagon train wall of death washer washer fluid Watson's Webinars website what is donation what is it wheel speed sensor wheelchair White williams Willys windshield washer wing Wireless framework women woodlight headlights Woody work truck working principle of anti-lock braking system workshop World Worst Sellers wreck Wrongful Death WW1 WW2 XK SS Yoram Berholtz Yoshiki Chubachi Z 11 Z-28 Z28 zamboni ZL1 Zotye