Showing posts with label Smartphones. Show all posts
Showing posts with label Smartphones. Show all posts

Ford ports SmartDeviceLink to QNX CAR Platform

QNX joins Ford, Toyota, and other industry leaders to help drive new standard for app integration.

Paul Leroux
For as long as I can remember, QNX Software Systems has been at the forefront of integrating cars and smartphones. Through our flexible OS architecture and large automotive ecosystem, we provide automakers and Tier 1 suppliers with the ultimate choice in connectivity options for smartphones and other smart devices. And now, QNX customers will have even greater choice, with the availability of Ford’s SmartDeviceLink (SDL) technology for the QNX CAR Platform for Infotainment.

If you’ve never heard of SDL, it’s the open source version of Ford AppLink, the software that allows Ford SYNC users to access smartphone apps through voice commands and dashboard controls. Ford donated AppLink to the open source community to create a standard way for consumers to interact with smartphone apps, regardless of which phone they use or vehicle they drive.

SDL is quickly gaining industry advocates, including Toyota, UI Evolution, and, of course QNX. What’s more, companies like PSA, Honda, Subaru, Mazda are evaluating it for use in next-generation vehicles.

Why the interest in SDL? Because it’s a flexible, vendor-neutral standard that can benefit drivers, automakers, and developers alike. With SDL:

  • Drivers can interact with apps by using voice commands, steering-wheel buttons, and other in-car controls, so they can keep their eyes on the road and hands on the wheel.
  • Automakers can deliver a consistent app experience across vehicles, while retaining the flexibility to customize that experience for each vehicle brand or model.
  • Developers can create apps that can work across multiple smart devices and multiple automotive brands — which means they have greater incentive to create automotive apps.

SDL for QNX builds on a history of successful collaborations between Ford and QNX, including the QNX-powered Ford SYNC 3 infotainment system. According to Paul Elsila, CEO of Livio, the Ford subsidiary that maintains the SDL open source project, “With its large market share, QNX can play a key role in driving the adoption of auto industry standards, and we are excited to work with them in building vendor-neutral technology that can simplify the integration of smartphone apps in any brand or type of vehicle.”

SDL works with multiple smartphone platforms. Moreover, it is highly flexible: it can work across a full range of vehicles, from entry-level to premium, and across a wide range of displays. It can even be used in systems without displays — for instance, in systems that use a voice interface.

To learn more about SDL, check out the announcements that Ford, Toyota, and QNX issued this morning.

Getting in sync with brought-in devices

Building a head unit that needs to sync with smartphones, media players, memory cards, and USB sticks? With the QNX CAR Platform, you won’t be left to your own devices.

Paul Leroux
In previous posts, I discussed how the QNX CAR Platform for Infotainment is adept at juggling multiple concurrent tasks. For instance, it can perform 3D navigation, process voice signals, provide active noise control, display vehicle data, manage audio, run multiple application environments, and still deliver a fast, responsive user experience. If that’s not enough, it can also detect and play content from an array of media devices, including local drives, SD cards, and iPods, as well as Bluetooth, DLNA, and MTP devices.

When plugging a media device into a car’s head unit, most users expect immediate access to the device content; they also want to browse the content by metadata, such as genre, title, or artist. To present this content, the head unit must perform metadata synching. The question is, how can the head unit make the content instantly available, even when the media device contains thousands of files that may take many seconds or even minutes to fully synchronize?

To complicate matters, users often want to switch from one media source to another. For instance, a user listening to music stored on a DLNA device may ask the head unit to switch to an Internet radio station. From the user’s perspective, the switch should be fast, simple, and intuitive.

Handling device attachments (and
detachments) gracefully.
The head unit must also cope with the vagaries of user behavior. For instance, if the user yanks out a USB media stick during synching or playback, the system should recover gracefully; it should also provide appropriate feedback, such as displaying a menu that asks the user to choose from another media source. Likewise, if the user yanks out the media device and re-inserts it, the system shouldn’t get confused. Rather, it should simply resume synching content where it left off.

Handling scenarios like these is the job of the QNX CAR Platform’s multimedia architecture.

Architecture at a glance
The multimedia architecture integrates several software components to automatically detect media devices, synchronize metadata with media databases, browse the contents of devices, and, of course, play audio and video files. Together, these components form three layers:

  • Human machine interface, or HMI
  • Multimedia components
  • OS services



Let’s look at each of these layers in turn, starting with the HMI.

At the top of the HMI layer, you’ll see the Media Player, a reference application that allows end-users to control media browsing and playback. Developers can customize this player or write their own player apps, using APIs provided by the QNX CAR Platform.

The Media Player comes in two flavors, HTML5 and Qt 5. To communicate with the architecture’s multimedia engine (mm-player), the HTML5 version uses the car.mediaplayer JavaScript API while the Qt version uses the QPlayer library. In addition to these interfaces, custom apps can use the multimedia engine’s C API. All three interfaces — car.mediaplayer, QPlayer, and C API — provide an abstraction layer that allows a media player app to:

  • retrieve a list of accessible media sources: local drives, USB storage devices, iPods, etc.
  • retrieve track metadata: artist name, album name, track title, etc.
  • start and stop playback
  • jump to a specific track
  • handle updates in playback state, media sources, and track position

The interfaces that provide access to these operations aren’t specific to any device type, so player apps can work with a wide variety of media hardware.

The media player can quickly access and display a variety of metadata (artist name, album name, track title, etc.) stored in a small-footprint SQL database.



Multimedia components layer
If you look at the top of the multimedia components layer, you’ll see a box labeled mm-player; this is the architecture’s media browsing and playback engine. The mm-player does the dirty work of retrieving metadata, starting playback, jumping to a specific track, etc., which makes custom player apps easier to design. It also supports a large variety of media sources, including:

  • local drives
  • USB storage devices
  • Apple iPod devices
  • DLNA devices, including phones and media players
  • MTP devices, including PDAs and media players
  • devices paired through Bluetooth

To perform media operations requested by a client media player, mm-player works in concert with several lower-level components that help navigate media-store file systems, read metadata from media files, and manage media flows during playback. The components include a series of plugins (POSIX, AVRCP, DLNA, etc.) that interface with different device types. For instance, let’s say you insert an SD card. The POSIX plugin supports this type of device, so it will learn of the insertion and inform mm-player of the newly connected media source; it will also support any subsequent media operations on the SD card.

If you look again at the diagram, you’ll see several other components that provide services to mm-player. These include:

  • mm-detect — discovers media devices and initiates synchronization of metadata
  • mm-sync — synchronizes metadata from tracks and playlists on media devices into small-footprint SQL databases called QDB databases
  • mm-renderer — plays audio and video tracks, and reports playback state
  • io-audio — starts audio device drivers to enable the output of audio streams

OS services layer
The lowest layer of the multimedia architecture includes device drivers and protocol stacks that, among other things, detect whether the user has inserted or removed any media device. The following diagram summarizes what happens when one of these services detects an insertion:

  1. User inserts the device.
  2. The corresponding driver or protocol stack informs device publishers of the insertion.
  3. The publishers write the device information to Persistent Publish Subscribe (PPS) objects in a directory monitored by the mm-detect service. (Read my previous posts here and here to learn how QNX PPS messaging enables loosely coupled, easy-to-extend designs.)
  4. To start synchronizing the device’s metadata, mm-detect loads the device’s QDB database into memory and passes the device’s mountpoint and database name to mm-sync.
  5. mm-sync synchronizes the metadata of all media files on the device.
  6. mm-sync uses media libraries to read file paths and other information from media tracks found on the device. It then copies the extracted metadata into the appropriate database tables and columns. Applications can then query the QDB database to obtain metadata information such as track title and album name.

These steps may describe how the architecture detects and synchronizes with devices, but they can't capture the efficiency of the architecture and how it can deliver a fast, responsive user experience. For that, I invite you to check out this video on the QNX CAR Platform. The section on multimedia synchronization starts at the 1:32 mark, but I encourage you to watch the whole thing to see how the platform performs multimedia operations while concurrently managing other tasks:



Media browsing and playback
I’ve touched on how the multimedia architecture automatically detects and synchronizes devices. But of course, it does a lot more, including media browsing and media playback. To learn more about these features, visit the QNX CAR Platform documentation on the QNX website.


Previous posts in the QNX CAR Platform series:
 
  • A question of getting there — wherein I examine how the platform gives customers the flexibility to choose from a variety of navigation solutions
  • A question of architecture — wherein I discuss how the platform simplifies the challenge of integrating multiple disparate technologies, from graphics to silicon
  • A question of concurrency — wherein I address the a priori question: why does the auto industry need a platform like QNX CAR in the first place?

We showed you so

QNX has been building NFC functionality into concept cars since 2011. Now, with the advent of automotive-grade tags and chips, NFC may be coming to a dashboard near you.

Paul Leroux
Why does QNX transform vehicles like the Maserati QuattroPorte GTS, Mercedes-Benz CLA45, and Bentley Continental into technology concept cars? I can think of many reasons, but three stand out. First, the cars allow us to demonstrate the inherent flexibility and customizability of QNX technology. If you could put all of the cars side by side, you would quickly see that, while they all use the same QNX platform, each has a unique feature set and a distinctive look-and-feel — no two are alike. This flexibility is of immense importance to automakers, who, for reasons of market differentiation, need to deliver a unique brand experience in each marque or vehicle line. Alf Pollex, Head of Connected Car and Infotainment at Volkswagen, says it best: “the QNX platform... enables us to offer a full range of infotainment systems, from premium level to mass volume, using a single, proven software base.”

Second, the cars explore how thoughtful integration of new technologies can make driving easier, more enjoyable, and perhaps even a little safer. Case in point: the Maserati’s obstacle awareness display, which demonstrates how ADAS systems can aggregate data from ultrasonic and LiDAR sensors to help drivers become more aware of their surroundings. This display works much like a heads-up display, but instead of providing speed, RPM, or navigation information, it offers visual cues that help the driver gauge the direction and proximity of objects around the vehicle — pedestrians, for example.

Look ma, no menus: At 2012 CES, a QNX concept car
showcased how NFC can enable single-tap Bluetooth
phone pairing.
Source CrackBerry.com
Third, the cars explore solutions that address real and immediate pain points. Take, for example, the pairing of Bluetooth phones. Many consumers find this task difficult and time-consuming; automakers, for their part, see it as a source of customer dissatisfaction. So, in 2011, we started to equip some of our concept cars with near field communication (NFC) technology that enables one-touch phone pairing. This pairing is as easy it sounds: you simply touch an NFC-enabled phone to an NFC tag embedded in the car’s console, and voilà, pairing with the car’s infotainment system happens automatically.

Prime time
NFC in the car holds much promise, but when, exactly, will it be ready for prime time? Pretty soon, as it turns out. In a recent article, “NFC looks to score big in cars,” Automotive Engineering International points to several vendors, including Broadcom, NXP, Melexis, Texas Instruments and ams AG, that have either announced or shipped automotive-grade NFC solutions. NXP, for example, expects that some of its NFC tags and chips will first go into production cars around 2016.

Mind you, NFC isn’t just for phone pairing. It can, for example, enable key-fob applications that allow phones to store user preferences for seat positions and radio stations. It can also enable use cases in which multiple drivers operate the same vehicle, such as car sharing or fleet management. The important thing is, it’s moving from concept to production, marking one more step in the seamless integration of cars and smartphones.



Did you know…
  • BMW embeds NFC tags not only in its cars, but also in print ads.
  • IHS has predicted that, in 2018, global shipments of NFC-equipped cellphones will reach 1.2 billion units.
  • NFC World publishes a living document that lists all of the NFC handsets available worldwide.

Keeping it fresh for 35 years

By Megan Alink, Director of Marketing Communications for Automotive

Recently, my colleagues Paul Leroux and Matt Young showed off a shiny new infographic that enlightens readers to the many ways they encounter QNX-based systems in daily life (here and here). After three-and-a-half decades in business we’ve certainly been around the block a time or two, and you might think things are getting a bit stale. As the infographic shows, that couldn’t be further from the truth here at QNX. From up in the stars to down on the roads; in planes, trains, and automobiles (and boats too); whether you’re mailing a letter or crafting a BBM on your BlackBerry smartphone, the number and breadth of applications in which our customers deploy QNX technology is simply astounding.

For those who like some sound with their pictures, we also made a video to drive home the point that, wherever you are and whatever you do, chances are you’ll encounter a little QNX. Check it out:


Long time, no see: Catching up with the QNX CAR Platform

By Megan Alink, Director of Marketing Communications for Automotive

It’s a fact — a person simply can’t be in two places at one time. I can’t, you can’t, and the demo team at QNX can’t (especially when they’re brainstorming exciting showcase projects for 2016… but that’s another blog. Note to self.) So what’s a QNX-loving, software-admiring, car aficionado to do when he or she has lost touch and wants to see the latest on the QNX CAR Platform for Infotainment? Video, my friends.

One of the latest additions to our QNX Cam YouTube channel is an update to a video made just over two and a half years ago, in which my colleague, Sheridan Ethier, took viewers on a feature-by-feature walkthrough of the QNX CAR Platform. Now, Sheridan’s back for another tour, so sit back and enjoy a good, old-fashioned catch-up with what’s been going on with our flagship automotive product (with time references, just in case you’re in a bit of a hurry).

Sheridan Ethier hits the road in the QNX reference vehicle based on a modified Jeep Wrangler, running the latest QNX CAR Platform for Infotainment.

We kick things off with a look at one of the most popular elements of an infotainment system — multimedia. Starting around the 01:30 mark, Sheridan shows how the QNX CAR Platform supports a variety of music formats and media sources, from the system’s own multimedia player to a brought-in device. And when your passenger is agitating to switch from the CCR playlist on your MP3 device to Meghan Trainor on her USB music collection, the platform’s fast detection and sync time means you’ll barely miss a head-bob.

The QNX CAR Platform’s native multimedia player — the “juke box” — is just one of many options for enjoying your music.

About five minutes in, we take a look at how the QNX CAR Platform implements voice recognition. Whether you’re seeking out a hot latté, navigating to the nearest airport, or calling a co-worker to say you’ll be a few minutes late, the QNX CAR Platform lets you do what you want to do while doing what you need to do — keeping your hands on the wheel and your eyes on the road. Don’t miss a look at concurrency (previously discussed here by Paul Leroux) during this segment, when Sheridan runs the results of his voice commands (multimedia, navigation, and a hands-free call) smoothly at the same time.

Using voice recognition, users can navigate to a destination by address or point of interest description (such as an airport).

At eight minutes, Sheridan tells us about one of the best examples of the flexibility of the QNX CAR Platform — its support for application environments, including native C/C++, Qt, HTML5, and APK for running Android applications. The platform’s audio management capability makes a cameo appearance when Sheridan switches between the native multimedia player and the Pandora HTML5 app.

Pandora is just one of the HTML5 applications supported by the QNX CAR Platform.

As Sheridan tells us (at approximately 12:00), the ability to project smartphone screens and applications into the vehicle is an important trend in automotive. With technologies like MirrorLink, users can access nearly all of the applications available on their smartphone right from the head unit.

Projection technologies like MirrorLink allow automakers to select which applications will be delivered to the vehicle’s head unit from the user’s connected smartphone. 

Finally, we take a look at two interesting features that differentiate the QNX CAR Platform — last mode persistence (e.g. when the song you were listening to when you turned the car off starts up at the same point when you turn the car back on) and fastboot (which, in the case of QNX CAR, can bring your backup camera to life in 0.8 seconds, far less than the NHTSA-mandated 2 seconds). These features work hand-in-hand to ensure a safer, more enjoyable, more responsive driving experience.

Fastboot in 0.8 seconds means that when you’re ready to reverse, your car is ready to show you the way.

Interested in learning more about the QNX CAR Platform for Infotainment? Check out Paul Leroux’s blog on the architecture of this sophisticated piece of software. To see QNX CAR in action, read Tina Jeffrey’s blog, in which she talks about how the platform was implemented in the reimagined QNX reference vehicle for CES 2015.

Check out the video here:


Beyond the dashboard: discover how QNX touches your everyday life

QNX technology is in cars — lots of them. But it’s also in everything from planes and trains to smart phones, smart buildings, and smart vacuum cleaners. If you're interested, I happen to have an infographic handy...

I was a lost and lonely soul. Friends would cut phone calls short, strangers would move away from me on the bus, and acquaintances at cocktail parties would excuse themselves, promising to come right back — they never came back. I was in denial for a long time, but slowly and painfully, I came to the realization that I had to take ownership of this problem. Because it was my fault.

To by specific, it was my motor mouth. Whenever someone asked what I did for a living, I’d say I worked for QNX. That, of course, wasn’t a problem. But when they asked what QNX did, I would hold forth on microkernel OS architectures, user-space device drivers, resource manager frameworks, and graphical composition managers, not to mention asynchronous messaging, priority inheritance, and time partitioning. After all, who doesn't want to learn more about time partitioning?

Well, as I subsequently learned, there’s a time and place for everything. And while my passion about QNX technology was well-placed, my timing was lousy. People weren’t asking for a deep dive; they just wanted to understand QNX’s role in the scheme of things.

As it turns out, QNX plays a huge role, and in very many things. I’ve been working at QNX Software Systems for 25 years, and I am still gobsmacked by the sheer variety of uses that QNX technology is put to. I'm especially impressed by the crossover effect. For instance, what we learn in nuclear plants helps us offer a better OS for safety systems in cars. And what we learn in smartphones makes us a better platform supplier for companies building infotainment systems.

All of which to say, the next time someone asks me what QNX does, I will avoid the deep dive and show them this infographic instead. Of course, if they subsequently ask *how* QNX does all this, I will have a well-practiced answer. :-)

Did I mention? You can download a high-res JPEG of this infographic from our Flickr account and a PDF version from the QNX website.



Stay tuned for 2015 CES, where we will introduce even more ways QNX can make a difference, especially in how people design and drive cars.

And lest I forget, special thanks to my colleague Varghese at BlackBerry India for conceiving this infographic, and for the QNX employees who provided their invaluable input.

QNX Acoustics for Voice — a new name and a new benchmark in acoustic processing


Tina Jeffrey
Earlier this month, QNX Software Systems officially released QNX Acoustics for Voice 3.0 — the company’s latest generation of acoustic processing software for automotive hands-free voice communications. The solution sets a new benchmark in hands-free quality and supports the rigorous requirements of smartphone connectivity specifications.

Designed as a complete software solution, the product includes both the QNX Acoustics for Voice signal-processing library and the QWALive tool for tuning and configuration.

The signal-processing library manages the flow of audio during a hands-free voice call. It defines two paths: the send path, which handles audio flowing from the microphones to the far end of the call, and the receive path, which handles audio flowing from the far end to the loudspeakers in the car:





QWALive, used throughout development and pre-production phases, gives developers realtime control over all library parameters to accelerate tuning and diagnosis of audio issues:



A look under the hood
QNX Acoustics for Voice 3.0 builds on QNX Software Systems’ best-in-class acoustic echo cancellation and noise reduction algorithms, road-proven in tens of millions of cars, and offers breakthrough advancements over existing solutions.

Let me run through some of the innovative features that are already making waves (sorry, couldn’t resist) among automotive developers.

Perhaps the most significant innovation is our high efficiency technology. Why? Well, simply put, it saves up to 30% both in CPU load and in memory requirements for wideband (16 kHz sample rate for HD Voice) and Wideband Plus (24 kHz sample rate). This translates into the ability to do more processing on existing hardware, and with less memory. For instance, automakers can enable new smartphone connectivity capabilities on current hardware, without compromising performance:



Another feature that premieres with this release is intelligent voice optimization technology, designed to accelerate and increase the robustness of send-path tuning. This technology implements an automated frequency response correction model that dynamically adjusts the frequency response of the send path to compensate for variations in the acoustic path and vehicle cabin conditions.

Dynamic noise shaping, which is exclusive to QNX Acoustics for Voice, also debuts in this release. It enhances speech quality in the send path by reducing broadband noise from fans, defrost vents, and HVAC systems — a welcome feature, as broadband noise can be particularly difficult for hands-free systems to contend with.

Flexibility and portability — check and check
Like its predecessor (QNX Aviage Acoustic Processing 2.0), QNX Acoustics for Voice 3.0 continues to offer maximum flexibility to automakers. The modular software library comes with a comprehensive API, easing integration efforts into infotainment, telematics, and audio amplifier modules. Developers can choose from fixed- and floating-point versions that can be ported to a variety of operating systems and deployed on a wide range of processors or DSPs.

We’re excited about this release as it’s the most sophisticated acoustic voice processing solution available to date, and it allows automakers to build and hone systems for a variety of speech requirements, across all their vehicle platforms.

Check out the QNX Acoustics for Voice product page to learn more.

QNX-powered Audi MMI framework to support Android Auto

This just in: Audi has announced that its Audi MMI mobile media application framework, which is built on the QNX CAR Platform for Infotainment, will support the new Android Auto connectivity solution.

The new feature will allow drivers to access Android-device car apps using Audi MMI displays and controls, which Audi has optimized for safe and intuitive operation on the road.

Audi states that the MMI system will still maintain its compatibility with other smartphones. Moreover, drivers will be able to switch between the Android view and Audi infotainment functions, as desired.

Audi is a long-standing customer of QNX Software Systems. Audi systems based on QNX technology include the recent Audi Virtual Cockpit and Audi Connect with Google Earth.

Audi plans to introduce Android Auto support in all-new models launched in 2015. For the complete story on Audi support for Android Auto, read the Audi press release.

Crisper, clearer in-car communication — Roger that

Tina Jeffrey
Over the years, Telematics Detroit has become a premier venue for showing off advancements in automotive infotainment, telematics, apps, cloud connectivity, silicon, and more. If the breadth of QNX technology being demonstrated at the show this week is any indication, the event won’t disappoint. Among the highlights is our next-generation acoustics processing middleware — QNX Acoustics for Voice 3.0 — which has been architected to deliver the highest-quality audio for hands-free and speech recognition systems, enabling the ultimate acoustics experience in the car.

What is QNX Acoustics for Voice?
QNX Acoustics for Voice 3.0 is the successor to the QNX Aviage Acoustics Processing Suite 2.0. The new product includes a set of libraries — standard and premium — that offer automakers ultimate flexibility for voice processing in the harsh audio environment of the car.

The standard library provides a full-featured solution for implementing narrowband and wideband hands-free communications, operating at 8 kHz and 16kHz sample rates, respectively. It also includes innovative new features for performing echo cancellation, noise reduction, adaptive equalization, and automatic gain control. Perhaps the most valuable feature, especially for systems constrained by limited CPU cycles, is the high efficiency mode, which can process wideband and higher-bandwidth speech with substantially less CPU load. The net result: more processing headroom for other tasks.

The premium library includes all the standard library functionality, plus support for Wideband Plus, which expands the frequency range of transmitted speech to 50 Hz - 11 kHz, at a 24kHz sample rate. The introduction of Wideband Plus fulfills the higher voice quality and low noise requirements demanded by the latest smartphone connectivity protocols for telephony, VoIP services, and speech recognition. Let me recap with a table:

Supported capabilities
Standard library
Premium library
Narrowband audio: 300 – 3400Hz (8kHz sample rate)
   
   
Wideband audio: 50-7000Hz
(16kHz sample rate)
   
   
Wideband Plus audio: 50Hz – 11kHz (24kHz sample rate)

   
High efficiency mode
 
(Wideband only)
   
VOIP requirements for new smartphone connectivity protocols

   
Cloud-based speech recognition requirements for new smartphone connectivity protocols

   



Why is high-quality speech important in the car?

Simply put, it improves the user experience and can benefit passenger safety. Also, new smartphone connectivity protocols require it. Let’s examine two use cases: hands-free voice calling, and speech recognition.

In a voice call, processing a larger bandwidth of speech and eliminating echo and noise from various sources, including wind, road, vents, fans, and tires, dramatically increases speech intelligibility — and the more intelligible the speech, the more natural the flow of conversation. Also, clearer speech has less impact on the driver’s cognitive load, enabling the driver to pay more attention to the task at hand: driving.

Speech recognition systems are becoming a primary way to manage apps and services in the car. Voice commands can initiate phone calls, select media for playback, search for points of interest (POI), and choose a destination.

Technological advancements in pre-processing voice input to remove noise and disturbances helps speech recognizers detect commands more reliably, thereby achieving higher recognition accuracy. Early speech recognition systems, by comparison, were unintuitive and performed poorly. Drivers became so frustrated that they stopped using these systems and resorted to picking up their smartphones, completely eliminating the safety benefits of speech recognition.

QNX Acoustics for Voice 3.0 is a comprehensive automotive voice solution that includes industry-leading echo cancellation, noise reduction, adaptive equalization and automatic gain control.

If you happen to be at Telematics Update in Novi Michigan this week, be sure to drop by our booth to sit in our latest concept car — a specially modified Mercedes-Benz CLA45 AMG — and experience our acoustics technologies first hand.

Automotive technology

Automotive

Labels

1904 Columbus 1940 Ford 1964 Worlds Fair 1969 Camaro 1969 Dodge Coronet Super Bee 2014 2016 Sales 2017 The Bad 8 2017 The Good 12 3 wheeler 4 G 407 407 ex2 427 AC Cobra 440 six pack 442 4x 4x4 55 Chevy 57 Chevy 5th wheel AAR abandoned abs abuse by law enforcement AC Cobra Acadian accessories accident Acoustic processing Active noise control (ANC) Acura Acura Reviews adaptive cruise control ADAS Adobe AIR ads adventurers advertising aerodynamics Aircraft engines airlines airplane Airstream Alfa Alfa Romeo Alfa-Romeo All Cars Rankings All SUV Rankings All Vehicle Rankings Alpina Alpine AMBR winner ambulance AMC America's greatest photographers American LaFrance amphib AMX AMX-3 Andorra Andrew Poliak Android Andy Gryc anti lock braking system App World Apps Arab-Supercar area controller Ariel-Nomad ARM-based devices art Art Arfons Art Deco artist Asset management system Aston Martin Aston-Martin atv auction Audi Audi Reviews audio Augmented reality Austin Austin Healey Australia Austria Auto Accident Attorney auto car donate auto car donation Auto Donate Auto Donation California Auto hobby books Auto Sales By Brand auto show Auto Story in Pictures Wednesday auto taxi Autocar automobile automobile donation AUTOMOBILE INSURANCE automobile parts automobile safety system automobule donate Autonomous cars Awards awesome B 29 B 52 BAIC Baja racing Baker banners barn find barn finds barnfind barnfinds Barracuda Barris barum BatBerry Batman Batteries battery beautiful engine Beautiful paint before and after Belgium Bello's belly tanker Bentley Best Sellers Best Selling American Cars Best Selling Cars Best Selling Luxury Best Selling SUVs Best Selling Trucks Best Selling Vehicles bicycle bicycles Big 3 Swap Meet big wheel bike messengers bike rack biofuel biography BlackBerry BlackBerry Radar BlackBerry-QNX blink code blink code checkup blink code error blink code troubleshooting Blog blogs BMW BMW Audi Mercedes Benz Daimler jeep GM toyota Chrysler VW volkswagon nissan infiniti ford unique rare Bntley boardtrack Boats boattail Bonneville book review bookmobile Boss 302 Boss 429 brake brakes braking system Brand Marketshare brass era breedlove Brewster Brian Salisbury Bricklin bridge British Britten brochure Bugatti Buick Bulgaria burnout bus Buses buying selling cash tips money advice BYD c C-type Jag Cadillac Cadillac Reviews Camaro Can Am Canada Canada 2016 Sales Canada All Cars Rankings Canada All SUV Rankings Canada All Vehicle Rankings Canada Auto Sales Canada Auto Sales By Brand Canada Best Sellers Canada Compact Car Sales Canada December 2016 Canada Entry Luxury Car Sales Canada February 2017 Canada January 2017 Canada Large Car Sales Canada Large Luxury Car Sales Canada Large Luxury SUV Sales Canada Large SUV Sales Canada March 2017 Canada Midsize Car Sales Canada Midsize Luxury Car Sales Canada Midsize Luxury SUV Sales Canada Midsize SUV Sales Canada Minivan Sales Canada November 2016 Canada October 2016 Canada Premium Sporty Car Sales Canada September 2016 Canada Small Luxury SUV Sales Canada Small SUV Sales Canada Sporty Car Sales Canada Truck Sales Canada Van Sales Canada Worst Sellers car care car chase scene car clubs car collections car collectors Car Donate car donate california car donation Car Donations California Car or the Future car wash carbs carrozzeria cart caterpillar tracked vehicle CCS celebrities celebrity Certicom CES CESA 2012 CESA 3.0 Chademo Challenger Chaparral Charger Charity Charity auction charity car donation Charity Car Donation Program Charity Car With Your Credit Card cheating Checker Chery Chevelle Chevrolet Chevrolet Reviews Chevy 2 China chopper Christian Sobottka Christie Christmas Chrysler Citroen Citroën classics cleaning clip Cloud connectivity CO2 Cobra Cobra Daytona Coupe Cobra Mustang Cobra Torino COE Cogent collection collector College Colombia commercial common rail direct injection Compact Car Sales companies comparison compliment components components of anti-lock braking system concept Concept car Concept team Connected Car construction Consumer Electronics Show consumers Contest convertible Coronet Corvair corvette Corvettes Costa Rica coupe coventry cragar crash crde crdi Croatia Crosley crossover Cruise 4 Kids crypto cryptography CTS Cuda Cunningham Curtiss Aerocar Custom customer satisfaction cutaway display cycle car Cyclone Cyprus Czech Republic dacia Daihatsu Dan Gurney dart Datsun Daytona ddis DDS dealers Dealership Dean Martin December 2016 Degree delivery truck Delorean Delphi Demon Denmark Derek Kuhn design deuce devices Dick Landy dicor Digital instrument clusters digital spark ignition Diner with car theme direction injection Disney display diy Dodge domain controller Donate Donate A Car Tax Deduction Donate Automobile To Charity Donate Car To Charity Tax Deduction Donate Vehicles To Charity donation donation auto car donation vehicles to charity Doug Newcomb Drag racing drag strip Dragonsnake dragsters DREAM drifting Driven Driver distraction driving assistance drunk driver DS dtsi dual carbs dual engined dualie Ducati dump truck dvla E-type Jag ECC economy ECU Ecuador electric electric car Electric cars electromagnetic brake Elliptic Curve Cryptography EMF Emil Dautovic Endurance racing engine engine accessories Engine sound enhancement engines Entry Luxury Car Sales enzo Erskine Essex estate Estonia etc EUCAR Europe EV Business Case Evel Knievel event experience experiment extreme sports video F1 Factor-Aurelio Factory lightweight Factory race car Fairlane Falcon Fast boot Fast-Charging FCA FCEV February 2017 Ferrari Fiat Fiat Botafogo finance Finland fips fire engine fire fighting fire trucks Firebird Firestone firetrucks Fisker flamejob fleet management Ford ford escort Ford Reviews Fordson tractor Forecasts FOTA found around the neighborhood France Franklin Free Car Donation Freescale french fuel fuel injection fuel injection system Fuel Tanker fuel-cell fun Funny car Futurliner gadgets Galpin Ford game garage garner gas mileage gas stations Gasser Gauges GCBC Awards GCBC Most Popular Geely Gene Winfield General Motors German Germany give your car to charity GM GM MyLink GNX Go cart good news Goodwood Goodyear gourmet food vans GPU Graham Gran Prix Grand National Roadster Show 2017 Grand Sport Corvette Graph Great Wall Motors Greece green Green car Gremlin GT GT 350 GT 40 GT 500 gt40 GTO GTX Gulf race car Gullwing Guy Martin Hands-free systems Harley Harley Davidson hauler Hawaii helicopter hemi hemmings Hennessey Henry J hero Hertz hire Hispano-Suiza historical history HMIs Holden Hollywood Holman Moody Honda Honda Reviews Honda Sales Hong Kong Hood ornaments hood scoops Horizon 2020 horse carriage horse wagon host blog info about auto Hot rods Hot Wheels Housekeeping How To Donate How To Donate A Car For Tax Deduction How To Donate Car To Charity how to donation car to charity HRM HTML5 Hudson Hummer humor humour Humvee Hungary Hupmobile Hurst Hurst SC Rambler hybrid Hybrid cars hydrogen hypervisor Hyundai Hyundai Reviews Ian Roussel Iceland ID4 Car ignition IIoT immitation Impala india Indian Indianapolis industry news infiniti Infiniti Reviews Info infographic informative Infotainment Injury Lawyer Innotrans innova innovation innovative instrument panel insurance intake Intel interior International Harvester Internet of Things Internet radio invitation IoT Ireland iris iris details iris engine details iris technical Isetta Iskenderian Isky Isle of Man ISO 26262 Israel issues Isuzu Italian Italy ITS ITU IVI Jaguar January 2017 Japan Japanese Javelin Jay Leno Jean-François Tarabbia Jeep Jeep Wrangler JLR John D'Agostino John Deere John Wall Justin Moon jv Kaivan Karimi Kandi kawasaki Ken Block Kerry Johnson Kia kids Kim Cairns Kissel Kombi Kroy Zeviar Kurtis La Carrera Panamerica lace paint Lamborghini Lamborghini Revuelto Lancia Land Cruiser Land Rover Land Rover Sales land speed record holder Land-Rover Large Car Sales Large Luxury Car Sales Large Luxury SUV Sales Large SUV Sales Larry Wood LaSalle Latvia launch law enforcement lawnmower laws Le Mans legends Leno Lexus license plates Lidar Life Insurance limited Lincoln Lincoln MKZ Linda Campbell Linda Vaughn links lists Lithuania live Loans Locomobile logging train logging trucks Lola London to Brighton Looking for EV's Los Angeles Lotus lowrider LSR Luxembourg luxury Lyft Lynn Gayowski Mach 1 machine shop Mack Mad Max magazine magazines magic iris mags Malaysia March 2017 Mario Andretti Mark Donohue marketing Marketshare Maserati Matt Watson Maverick Mazda Mazda Reviews MB McLaren mechanic Megan Alink meme Memory Lane Men Micro Mercedes Mercedes Benz Mercedes-Benz Mercer Cobra Mercury Metallica Metro Mexico Miata microkernal Midsize Car Sales Midsize Luxury Car Sales Midsize Luxury SUV Sales Midsize SUV Sales Military Miller race car mini mini bike miniature Minivan Sales MirrorLink mission-critical Mitsubishi Miura MMI Mobile connectivity Mobile World Congress mod top Model Model A model T modifications Momo Monaco Monster Truck Moon Moon eyes Mopar Mopar parts Morgan Morocco morons mot Motor shows motor wheel Motorcycle Motorcycles motorhomes Mouse movie movies mpv Multicore Munsters Muntz muscle cars musclecars museum music video Mustang NAIAS Nancy Young Nascar Nash Navigation naza neglec neglected Netherlands new tv show New York New Zealand news ni Nissan Nissan Reviews Nomad Norway nos nose art Nova November 2016 Nurburgring Object Management group October 2016 off roading offenhauser Oldsmobile OMG Online College OnStar Opel Open source Open standards OpenGL ES option orders original owner Ormond Beach land speed racing pace car Packard Pagani Paige pamphlet panel paint Paris to Peking race parking parts Patryk Fournier Paul Leroux Paul Newman Paul Sykes Pebble Beach pedal car perodua personal Peter McCarthy petrol petroliana Peugeot Phoenix Injury photographer photography pics pictures Pierce Arrow Pike's Peak Pinin Farina pinstriping Pit row Pits Pixar PKI plank road PlayBook Plymouth Point Grey Camera Poland pole wheel police Polysynch Pontiac Porsche Porsche 917 Porsche Carrera Portugal POSIX pre 1930's gas station Premium Sporty Car Sales President of the USA Preview prices prius project prooject Proton prototype PSA Peugeot Citroen public key cryptography Pullman QNX QNX CAR QNX Garage QNX OS Qualcomm quiz quote race cars racing racing. LSR Radar radio Raid Data rail railcars railroad ralliart Rally rallying Ram range rover rant Rapid Transit System advertsing rare Real time Innovations recall recommended shop record setter Red Bull Sports Reference vehicle Reliability Rémi Bastien RemoteLink Renault Renesas Renntransporter rentals REO repair reports resarch research restoration restoration shop review Richard Bishop Ridler Award Winner rims river bank cars road and highway Road Runner roadster Robot OS Robot wars Roewe Roger Penske Rolls Royce Romain Saha Romania ROS Roth RTI RTI Connext rumble seat Russia Ruxton RV Safety Safety systems safety-certified sales Sales By Model Sales Stats samba sampan Saoutchik Satellite satnav Scaglietti scallops Scat Pack SCCA racecar School bus sci-fi Scooter SCORE Baja trucks Scott Pennock Scout sculpture Security sedan segway semi sensor extension cable sensor fusion September 2016 service service repair automotive vehicle car buying selling mission statement blog free broker shay drive locomotive Shelby shifter shop Show cars sidecars signs skateboarding Skoda slicks slingshot dragster Slovakia Slovenia Small Luxury SUV Sales Small SUV Sales Smart Smartphones snow machines snowmobile Soapbox South Africa South Korea Sox and Martin Spain spare tire spark ignition spark plug spark plugs Spatial auditory displays special edition Mustangs Speech interfaces speed limit Speed Record speedfest speedster sports car sports cars Sporty Car Sales spy shots spyker Sri Lanka SS SS/AH Stagecoach Stanley Station Wagon steam locomotive steam powered steam shovel steampunk steering wheel Steve McQueen Stig Stirling Moss Stolen streamliner street cars Street Van studebaker stunt stunts Stutz Stutz Blackhawk Subaru Sunbeam Super Bee Super Stock Superbird Supercar supercharger survey suv Suzuki Sweden Swift Switzerland System development Life Cycle Tablets Tach takeover tank tata tata magic iris tata vehicles tax Tax Deduction For Car Donation taxi taxi cab TCS tdi teardrop technical technology Telematics Telematics Detroit Telematics Update tempo Tempo Matador Terlingua Racing Team Terry Staycer Tesla test testdrive Texas Instruments The Race Of Gentlemen Thomas Bloor thoughts three wheeler Thunderbird ticket Tiger Tim Neil Tina Jeffrey tips tires tool tool kit toolbox tools Top Gear top ten list Torino tour bus tourbus towtruck Toyota Toyota Entune Toyota Reviews tractor trailer train train wreck trains Trans Am transmission Transporter Traval trike Triumph trivia trolley Troy Trepanier truck Truck Sales trucking trucks Tucker turbocharger turbojet turbonique Turkey tv tv cars twin spark type 1 type 2 tyres UAE Uber UK UK Auto Sales UK Best Sellers uk market Ukraine Unimog unique University of Waterloo Unser unusual unveil upgrade US US 2016 Sales US All Cars Rankings US All SUV Rankings US All Vehicle Rankings US Auto Sales US Auto Sales By Brand US Best Sellers US Compact Car Sales US December 2016 US Entry Luxury Car Sales US February 2017 US January 2017 US Large Car Sales US Large Luxury Car Sales US Large Luxury SUV Sales US Large SUV Sales US March 2017 US Midsize Car Sales US Midsize Luxury Car Sales US Midsize Luxury SUV Sales US Midsize SUV Sales US Minivan Sales US Navy US November 2016 US October 2016 US September 2016 US Small Luxury SUV Sales US Small SUV Sales US Sporty Car Sales US Truck Sales US US Auto Sales US Van Sales US Worst Sellers USA used cars V2X van Van Sales vauxhall VeDeCoM Vehicle Donation California Velodyne Vespa Video vintage vintage racing Virtual mechanic Virtualization VOIP Guide Volkswagen Volkswagen Reviews Volkswagen Sales Volvo Von Dutch vote VW VW bug W3C wagon train wall of death washer washer fluid Watson's Webinars website what is donation what is it wheel speed sensor wheelchair White williams Willys windshield washer wing Wireless framework women woodlight headlights Woody work truck working principle of anti-lock braking system workshop World Worst Sellers wreck Wrongful Death WW1 WW2 XK SS Yoram Berholtz Yoshiki Chubachi Z 11 Z-28 Z28 zamboni ZL1 Zotye