Showing posts with label Digital instrument clusters. Show all posts
Showing posts with label Digital instrument clusters. Show all posts

Developing software for safety-critical systems? Have I got a book for you

Paul Leroux
Chris Hobbs is the only person I know who holds a math degree with a specialization in mathematical philosophy. In fact, before I met him, I didn’t know such a thing even existed. But guess what? That’s one of the things I really like about Chris. The more I hang out with him, the more I learn.

Come to think of it, helping people learn has become something of a specialty for Chris. He is, for example, a flying instructor and the author of Flying Beyond: The Canadian Commercial Pilot Textbook. And, as a software safety specialist at QNX Software Systems, he regularly provides advice to customers building systems that must comply with functional safety standards like IEC 61508, EN 5012x, and ISO 26262.

Chris has already written a number of papers on software safety, some of which I have had the great privilege to edit. You can find several of them on the QNX website. But recently, Chris upped the ante and wrote an entire book on the subject, titled Embedded Software Development for Safety-Critical Systems. The book:

  • covers the development of safety-critical systems under ISO 26262, IEC 61508, EN 50128, and IEC 62304
  • helps readers understand and apply remarkably esoteric development practices and be prepared to justify their work to external auditors
  • discusses the advantages and disadvantages of architectural and design practices recommended in the standards, including replication and diversification, anomaly detection, and so-called “safety bag” systems
  • examines the use of open-source components in safety-critical systems

I haven’t yet had a chance to review the book, but at 358 pages, it promises to be a substantial read.

Interested? Well, you can’t get the book just yet. But you can pre-order it today and get one of the first copies off the press. It’s scheduled for release September 1.


Concept Car mit QNX-Technologie feiert seinen Auftakt in Europa

Ein Gastbeitrag von Matthias Stumpf, Vertriebsleiter Automotive EMEA, QNX Software Systems
(Guest post from Matthias Stumpf, manager of automotive sales EMEA, QNX Software Systems)


Nachdem der Mercedes-Benz CLA45 AMG, ein mit QNX-Technologie ausgestattetes Concept Car, in Nordamerika für Schlagzeilen gesorgt hat, wagt es nun für seine Europa-Tour den Sprung über den großen Teich. Startschuss ist auf dem Automobile Elektronik Kongress am 23. und 24. Juni in Ludwigsburg, wo das Auto zum ersten Mal in Europa ausgestellt wird.

Alle die den Mercedes in Aktion sehen wollen, sollten im Hauptfoyer des Kongresses vorbeischauen. Dort wird gezeigt, wie der Fahrer völlig natürlich und intuitiv mit dem im Auto verbauten Infotainment-System und den digitalen Instrumenten-Gruppen interagieren kann.

Eine extrabreite Head Unit
Das Auto verfügt über eine extrabreite Head Unit, die Fahrer und Beifahrer mit Hilfe detaillierter Grafiken und über ein durchgehendes 7 Zoll bis 21 Zoll großes Interface mit Informationen versorgt. Dank des nutzerorientierten Designs kann das Infotainment-System optional über den Touchscreen, physische Knöpfe, den Multifunktions-Controller oder via Sprachbefehl gesteuert werden. Das System basiert auf der QNX CAR Platform for Infotainment, einem umfangreichen Ökosystem, das bereits QNX-Software-Systems-Technologien und zahlreiche Partner integriert hat:

QNX 2014 technology concept car - infotainment system

Konfigurierbares Instrumente-Cluster
Das digitale Instrumente-Cluster kann dynamisch angepasst werden und zeigt Wegbeschreibungen in Echtzeit, eingehende Telefonanrufe, Videos der Front- und Heck-Bordkameras, Drehzahl- und Geschwindigkeitsmesser sowie weitere virtuelle Instrumente an. Via Tastendruck auf dem Lenkrad werden sogar empfangene Textnachrichten vorgelesen; so behält der Fahrer seine Augen auf der Straße:

QNX 2014 technology concept car - cluster

Darüber hinaus können mit der “virtuellen Bordmechanik” des Clusters Statusinformationen wie Reifendruck, Bremsverschleiß sowie Treibstoff-, Öl- und Scheibenwaschwasserstand abgerufen werden:



Wenn Sie an weiteren Informationen über die zahlreichen Features des Concept Cars interessiert sind, lesen Sie hier und hier unsere vorangegangenen Blogbeiträge.

Wir freuen uns, Sie in Ludwigsburg begrüßen zu dürfen! Alle weiteren Termine der Europa-Tour des Concept Cars erhalten Sie hier auf unserem Blog.

Digital instrument clusters and the road to autonomous driving

Guest post by Walter Sullivan, head of Innovation Lab, Silicon Valley, Elektrobit Automotive

Autonomous driving requires new user experience interfaces, always on connectivity, new system architectures and reliable security. In addition to these requirements, the real estate in the car is changing as we move towards autonomous driving, and the traditional display is being replaced by head up displays (HUD), digital instrument clusters, and other screens. The digital cluster is where automakers can blend traditional automotive status displays (such as odometer, speed, etc.) with safety features, entertainment, and navigation, providing a more personalized, safe, comfortable, and enjoyable driving experience.

For autonomous vehicles, the human-machine interface (HMI) will change with the level of autonomy. Until vehicles are fully autonomous, all the traditional functions of the in-car HMI must be covered and driver distraction needs to be minimized. As we progress through piloted drive towards full autonomy, additional functions are taking center stage in the instrument cluster: driver assistance (distance to vehicle in front, speed limit, optimized time to destination/fuel consumption, object detection, etc.).

The digital instrument cluster brings a number of benefits to the driver experience including:
  • Comfort: The more information that a driver has about the route, right before his or her eyes, the more comfortable the drive. Digital clusters that provide map data, not just routing guidance but information on the nearest gas station, traffic, upcoming toll roads, etc., give the most comfort by empowering the driver with the information needed to get to the destination quickly and safely.
  • Safety: Drivers benefit from cars that know what’s on the road ahead. Through electronic horizon-based features, clusters can display “predictive” driver-assistance information that delivers to the driver important messages regarding safety.
  • Entertainment: Consumers are looking for vehicles that allow them to transfer their digital lifestyle seamlessly into the driving experience. The cluster can enable such integration, allowing the driver to control a smartphone using the in-car system, stream music, make phone calls, and more.

As more software and technology enters the car and we move closer to the fully autonomous vehicle, the cluster will continue to be the main platform for HMI. Automakers are challenged to build the most user-friendly, personalized clusters they can, with today’s cars employing advanced visual controls that integrate 3D graphics and animation and even natural language voice control. Drivers will rely more heavily on the cluster to provide them information that ensures their safety and comfort during the ride.

Digital instrument cluster developed using EB technology, as shown in the QNX reference vehicle.

Curious about what this kind of technology looks like? Digital instrument clusters developed using Elektrobit (EB) Automotive software will be displayed at the QNX Software Systems (booth C92) during TU-Automotive Detroit, June 3-4. QNX will feature a demo cluster developed using EB GUIDE that integrates a simulated navigation route with EB street director, plus infotainment and car system data. You can also see EB technology in action in the QNX reference vehicle based on a Jeep Wrangler, in which EB street director and the award-winning EB Assist Electronic Horizon are both integrated in the digital cluster.


Walter Sullivan is head of Elektrobit (EB) Automotive’s newly established Silicon Valley Innovation Lab, responsible for developing and leading the company’s presence in Silicon Valley, as well as building and fostering strategic partnerships around the globe.

Visit Elektrobit here.

Reimagining digital instrument cluster design

Guest post by Jason Clarke, vice president, sales and marketing, Crank Software

Technology in cars has been advancing at an impressive rate. From rich infotainment systems to intelligent digital instrument clusters, today’s automobile has evolved to become a cool reality that many of us only envisioned as a possibility a few years ago. But while the technology has changed, the driver has stayed the same. Drivers still need to get from point A to point B as efficiently and safely as possible, while perhaps listening to some favorite road trip tunes on the journey.

What has changed for drivers is the sheer volume of information that is available while behind the wheel. Today’s vehicle can tell you more than the fact that you are desperately in need of finding the nearest gas station. It’s smart enough to let you know when you are getting close to hitting the neighbor’s garbage can… again. It can alert you to traffic pattern changes, road hazards, inclement weather, your affinity to your lead foot, and to the fact that your spouse is texting you to remind you to pick up the dry cleaning. It can also effortlessly re-route you back to the dry cleaners after you realize you’ve forgotten, providing you with helpful turn-by-turn navigation in your instrument cluster.

That’s a lot of information. And it’s only a small slice of what’s available to today’s driver. The simplicity, reliability, and safety capabilities of platforms by QNX Software Systems make it a possible to have a wide range of technologies and features in a single vehicle, offering up an abundance of data for driver consumption.

So, how do we make this data useful for drivers? What do we need to consider when designing the UI for digital instrument clusters?

How much information does the driver REALLY need?
Information should be helpful, not intrusive or distracting from the task at hand — driving. The point of having more data available to drivers isn’t to show it all at the same time. That’s visually noisy and complex. Complex isn’t better; context is better. Turn-by-turn information can be displayed in the instrument cluster, based on communication from the navigation system. Video of the car’s surroundings can be displayed when parking assist services are engaged. Advanced Driver Assistance Systems (ADAS) can present in the cluster alerts to immediate hazards and objects.

Using tools that support rapid prototyping of design scenarios empowers teams to deliver the best user experience possible, serving up only the most relevant information. Using Storyboard Suite from Crank Software, teams can quickly cycle through design prototypes and perform testing on real hardware, focusing on the needs of the driver.

How do we best visualize the data?
It’s critical that drivers see and interpret displayed information as easily and quickly as possible. Clear visual representation of data is required, so it’s important to keep design considerations at the forefront in the development process. This is where the graphic designer comes in.

Crank Software’s Storyboard Suite allows the graphic designer to be integrated into the development process from concept to final HMI delivery, working in parallel with the engineers to ensure that fine details and subtle design nuances aren’t lost. With Storyboard Suite, designers don’t hand over a mockup to a developer to visually represent with code and then walk away. As the graphics change and evolve to satisfy usability requirements, the designer stays engaged throughout the entire process, helping to deliver a polished HMI.

Automotive cluster designed and developed with Crank Software Storyboard Suite, running on QNX Neutrino OS

Can we respond quickly to design change?
Remaining focused on the usability of the end design is critical to ensuring the safest driving experience. Delivering a high-performance, user-centric HMI requires testing, design refinements, retesting, and even further changes. This isn’t a linear process. While iterative process is important, it’s often cost prohibitive because it can introduce lengthy redesign cycles. Storyboard Suite provides teams the functionality to prototype and iterate through designs easily, using features such as Photoshop Re-import to quickly evaluate design changes on hardware and shorten development cycles. In addition, support for collaboration enables teams to share design and development work, thereby reducing the load on individuals and further optimizing time and resources.

A faster development process coupled with a user-focused end design is the key to delivering a highly usable and safe digital instrument cluster to market on schedule and within budget.

A digital instrument cluster developed with Storyboard Suite will be on display at TU-Automotive Detroit in the QNX Software Systems booth, #C92, and the Crank Software booth, #C113. Check out a previous Crank Software and QNX Software Systems collaboration with a Storyboard Suite UI in a QNX technology concept car.


Jason Clarke has over 15 years of experience in the embedded industry, in roles that span development, sales, and marketing. Jason heads up Crank Software’s marketing and sales initiatives.

Visit Crank Software here.


Top 5 challenges of digital instrument clusters

Guest post by Olli Laiho, director, product marketing, Rightware

Digitalization of the modern car is progressing at breakneck speed, with research showing that over 70% of cars will ship with a digital display in the cluster by 2017 (Automotive User Interfaces 2014, IHS Automotive, 2014). While digital user interfaces have long been available in the center stack of the vehicle, they are now quickly making their way into the heart of the car’s dashboard — the instrument cluster. However, the migration from traditional, physical instrumentation to the digital Human Machine Interface (HMI) is posing various challenges for auto manufacturers. Here are the top five challenges Rightware is seeing today.

1. Deliver a winning user experience
With the digital cluster, auto manufacturers must deliver a user experience that makes consumers insist on having a digital cluster and makes them think they could never live without one. The car companies need to increase their investment in digital user experience design in order to provide consumers with a digital driving experience they’ll love.

User experience is all about... the user! With the help of target group research, auto manufacturers need to find the key use cases and features for different buyer profiles. While more senior buyers appreciate a digital design featuring traditional big gauges and needles combined with maps in the middle, millennials long for a cluster that connects them with their personal data at the right time, while having a modern look and feel with a real wow effect.

QNX Software Systems' technology concept car 2014 based on the Mercedes CLA 45, featuring a cluster created with Rightware Kanzi®

2. Find the right design-cost-performance combination
In creating HMIs such as digital clusters, finding the right balance among design, cost, and performance becomes essential. It’s all about:

Design — Delivering a stunning user experience
Cost — Minimizing software development, hardware, and maintenance costs
Performance — Choosing the right OS, System-on-a-Chip (SoC), etc.

Automotive user interface designers need to learn to work with the capabilities of the hardware and software platform of the cluster in mind. Designers need to create user experiences that strengthen the auto manufacturer’s brand image while still being possible to implement with the chosen tool chain and hardware and software platforms.

Choosing the SoC that can deliver the best user experience at the best price is essential. While proper automotive SoC benchmarking tools are not yet available in the market, auto manufacturers need to invest in their own measurements and trials for finding the right cost/performance level of the SoC for their project.

QNX Software Systems' technology concept car 2015 based on the Maserati Quattroporte, showing
system diagnostics in the cluster created with Rightware Kanzi

3. Reduce development time
Consumers have become accustomed to having access to the latest technology and innovations on their mobile devices. That expectation has now extended to HMIs in the car.

To meet consumer expectations, the automotive industry must shorten the development time of new vehicles and determine how to provide compelling software upgrades during the car’s lifecycle. Digital clusters need to be designed for upgradeability from the ground up. Through upgrades, the cluster should provide the necessary access to new app platforms and innovations. Streamlining the software development process and choosing the right tool chain for HMI development is key to creating HMIs faster and with more valuable features.

4. Accelerate update cycles

Consumers utilize their mobile devices daily and have learned to expect a constant update cycle that brings new features and enhancements to their device. This “update drug” has created a trend where the customer is waiting for the next update to their beloved devices — a customer that is always looking for more.

Until today, there have been few tangible software upgrades for a car during its lifetime. As an example, when you pick up your car from service, you’ll often see a line on the bill that says “software updates.” Leaving the garage, you can discern no difference in how the car behaves.

Auto manufacturers need a plan for providing consumers with constant software upgrades that give them value during the entire lifecycle of their vehicle. Upgrading the digital cluster doesn’t have to mean that it should look like next year’s model, but the upgrade should provide consumers with either features that add value or a clear, visual difference that they understand is an upgrade. Increasing the upgradeability of HMIs in the car will be a major opportunity for improving customer retention.

5. Establish design ownership
As automotive devices evolve into the digital age, they will also transform the way auto manufacturers create designs for their customers. Unlike a mobile device, HMI design will be specific not only to the manufacturer’s brand, but also to that model. Digital screens will give automotive UI designers the flexibility to create unique designs, and they will need full control of the UI framework to be able to deliver these stunning user experiences.

Consumers are increasingly connected 24/7 to ecosystems from companies such as Google and Apple. Due to the increase in consumer demand, these technologies are also making their way into the car cockpit in various forms — from simple content integration (SMS, mail, media) to sandboxed but comprehensive solutions like Apple CarPlay and Android Auto.

Automotive companies must invest in creating branded digital user experiences that can rival and exceed any third-party designs in the vehicle. They should invest in a UI solution and operating system that can deliver the design as intended.

Audi Q7 Virtual Cockpit, running on QNX Neutrino OS, featuring a cluster created with Rightware Kanzi



Visit Rightware at TU-Automotive Detroit (booth #C115) to witness next-generation HMI demos built with Kanzi and a first chance to see a brand new Kanzi product. You’ll also find Rightware’s technology in the QNX booth (#C92).



Olli Laiho has been working in software development for over 15 years. An avid car enthusiast, Olli heads Rightware’s global marketing activities.

The Rightware Kanzi UI Solution and the QNX Neutrino OS can already be found together in several vehicles, including the Audi TT, Audi Q7, and the Audi R8. Rightware has created several digital clusters for QNX technology concept cars, including the 2014 Mercedes CLA 45 and the 2015 Maserati Quattroporte.

Visit Rightware here.


Bringing safety assurance to automotive instrument clusters

Guest post by Chris Giordano, director of global business and software support, DiSTI Corporation

Digital instrument clusters in automobiles are here and almost any aviator could tell you this change was coming. Since the 1970s pilots have benefited from the use of digital screens in the cockpit to depict and convey aircraft status information.

The technology came as a response to the growing number of elements that were competing for space within the cockpit and for the pilot’s attention. What was needed was a way to process the raw aircraft system and flight data into an easy-to-understand picture of the aircraft’s situation: position, orientation, altitude, speed. Engineers at NASA Langley Research Center teamed with industry partners to develop the display concepts that would become the foundation of today’s primary flight displays (PFD).

Notional example of a primary flight display

By the early 1980s, as software continued to replace the functionality found in hardware components, certification had become more complicated. Potential flaws could be prevalent in both the hardware and the software. To alleviate this problem, standards for software development for aircraft systems emerged. In the U.S., DO-178 became the standard and the Europeans ratified the ED-12 equivalent. These standards not only took a logical assessment and validation of the input and output of a system, but dove further into the development cycle to prove that procedures were in place to prevent and minimize risk of a system failure. As a result, whenever a passenger walks down the jetway and onto their flight, these software standards help ensure they arrive safely.

In the past decade the automotive industry has progressed through a similar expansion in software use. Today, electronics and software drive 90% of all innovation. Electronics and software also determine up to 40% of the vehicle’s development costs. Anywhere from 50% to 70% of the development costs for an Electronic Control Unit (ECU) are related to software (Challenges in Automotive Software Engineering, Manfred Broy, Institut für Informatik Technische Universität München, 2006). New vehicles are monitoring complex engines, providing route guidance, communicating with other networks, avoiding accidents, and serving up media. Each new feature adds to system complexity, furthering the need to use software development best practices in order to avoid a big bowl of spaghetti code.

Notional example of an advanced instrument cluster start-up system check

The need for safety becomes more prevalent in the embedded system software as graphics-based instrument clusters continue to replace traditional analog-based gauge clusters. Enter the ISO 26262 standard for functional safety of electrical and electronic components in production passenger vehicles. Formally released in November 2011, the standard establishes the state-of-the-art for the automotive industry and assures the functional safety of these systems.

By using the QNX Neutrino OS and the DiSTI GL Studio toolkit, a development team can reduce the time and effort required to certify their solution to the automotive ISO 26262 functional safety standard up to Automotive Safety Integrity Level D (ASIL D), the highest classification of safety criticality defined by the ISO 26262 standard. This compliance allows automakers and Tier 1s to use this solution to meet safety certification requirements within the scope they choose.

This QNX Neutrino OS and DiSTI GL Studio solution will be on display at this year’s TU-Automotive Detroit. Check it out in the QNX booth, #C92 and the DiSTI booth, #A21.

Visit the DiSTI blog here.


Chris Giordano has been developing and supporting commercial HMI software for over 16 years and has been the lead engineer or program manager for 58 different visual programs at The DiSTI Corporation. Currently, Chris manages DiSTI’s Global Business and Software Support and is the program manager for several automotive OEM and Tier 1 supplier companies that utilize DiSTI’s GL Studio for their HMI development efforts. Chris worked very closely with the team at DiSTI that took GL Studio through the ISO 26262 certification process.
 

The CLA 45 has landed!

Megan Alink
Europe, your day has come! After five years of showcasing our technology concept cars primarily in North America, we’ve bid farewell to the Mercedes CLA 45 and sent it across the pond to our colleagues in Germany. Over the coming year while the Mercedes resides in Europe, our customers — and anyone who’s just mesmerized by slick, pre-integrated automotive tech — will have a chance to check the car out at a number of public events. (Stay tuned to www.qnx.com for more details as these events arise.)

Witness the unboxing:

The CLA 45 emerges into the light at Bremerhaven.

On land and settling in nicely.

So beautiful! We can't wait for a whole new continent to see it for themselves.

Interested in a sneak peek at the inside of this gorgeous vehicle? Read this blog from Lynn Gayowski, or get up close and personal with the digital instrument cluster in this one from Paul Leroux. For more photos, see our Flickr album.

Keeping it fresh for 35 years

By Megan Alink, Director of Marketing Communications for Automotive

Recently, my colleagues Paul Leroux and Matt Young showed off a shiny new infographic that enlightens readers to the many ways they encounter QNX-based systems in daily life (here and here). After three-and-a-half decades in business we’ve certainly been around the block a time or two, and you might think things are getting a bit stale. As the infographic shows, that couldn’t be further from the truth here at QNX. From up in the stars to down on the roads; in planes, trains, and automobiles (and boats too); whether you’re mailing a letter or crafting a BBM on your BlackBerry smartphone, the number and breadth of applications in which our customers deploy QNX technology is simply astounding.

For those who like some sound with their pictures, we also made a video to drive home the point that, wherever you are and whatever you do, chances are you’ll encounter a little QNX. Check it out:


Long time, no see: Catching up with the QNX CAR Platform

By Megan Alink, Director of Marketing Communications for Automotive

It’s a fact — a person simply can’t be in two places at one time. I can’t, you can’t, and the demo team at QNX can’t (especially when they’re brainstorming exciting showcase projects for 2016… but that’s another blog. Note to self.) So what’s a QNX-loving, software-admiring, car aficionado to do when he or she has lost touch and wants to see the latest on the QNX CAR Platform for Infotainment? Video, my friends.

One of the latest additions to our QNX Cam YouTube channel is an update to a video made just over two and a half years ago, in which my colleague, Sheridan Ethier, took viewers on a feature-by-feature walkthrough of the QNX CAR Platform. Now, Sheridan’s back for another tour, so sit back and enjoy a good, old-fashioned catch-up with what’s been going on with our flagship automotive product (with time references, just in case you’re in a bit of a hurry).

Sheridan Ethier hits the road in the QNX reference vehicle based on a modified Jeep Wrangler, running the latest QNX CAR Platform for Infotainment.

We kick things off with a look at one of the most popular elements of an infotainment system — multimedia. Starting around the 01:30 mark, Sheridan shows how the QNX CAR Platform supports a variety of music formats and media sources, from the system’s own multimedia player to a brought-in device. And when your passenger is agitating to switch from the CCR playlist on your MP3 device to Meghan Trainor on her USB music collection, the platform’s fast detection and sync time means you’ll barely miss a head-bob.

The QNX CAR Platform’s native multimedia player — the “juke box” — is just one of many options for enjoying your music.

About five minutes in, we take a look at how the QNX CAR Platform implements voice recognition. Whether you’re seeking out a hot latté, navigating to the nearest airport, or calling a co-worker to say you’ll be a few minutes late, the QNX CAR Platform lets you do what you want to do while doing what you need to do — keeping your hands on the wheel and your eyes on the road. Don’t miss a look at concurrency (previously discussed here by Paul Leroux) during this segment, when Sheridan runs the results of his voice commands (multimedia, navigation, and a hands-free call) smoothly at the same time.

Using voice recognition, users can navigate to a destination by address or point of interest description (such as an airport).

At eight minutes, Sheridan tells us about one of the best examples of the flexibility of the QNX CAR Platform — its support for application environments, including native C/C++, Qt, HTML5, and APK for running Android applications. The platform’s audio management capability makes a cameo appearance when Sheridan switches between the native multimedia player and the Pandora HTML5 app.

Pandora is just one of the HTML5 applications supported by the QNX CAR Platform.

As Sheridan tells us (at approximately 12:00), the ability to project smartphone screens and applications into the vehicle is an important trend in automotive. With technologies like MirrorLink, users can access nearly all of the applications available on their smartphone right from the head unit.

Projection technologies like MirrorLink allow automakers to select which applications will be delivered to the vehicle’s head unit from the user’s connected smartphone. 

Finally, we take a look at two interesting features that differentiate the QNX CAR Platform — last mode persistence (e.g. when the song you were listening to when you turned the car off starts up at the same point when you turn the car back on) and fastboot (which, in the case of QNX CAR, can bring your backup camera to life in 0.8 seconds, far less than the NHTSA-mandated 2 seconds). These features work hand-in-hand to ensure a safer, more enjoyable, more responsive driving experience.

Fastboot in 0.8 seconds means that when you’re ready to reverse, your car is ready to show you the way.

Interested in learning more about the QNX CAR Platform for Infotainment? Check out Paul Leroux’s blog on the architecture of this sophisticated piece of software. To see QNX CAR in action, read Tina Jeffrey’s blog, in which she talks about how the platform was implemented in the reimagined QNX reference vehicle for CES 2015.

Check out the video here:


Hypervisors, virtualization, and taking control of your safety certification budget

A new webinar on how virtualization can help you add new technology to existing designs.

First things first: should you say “hypervisor” or “virtual machine monitor”? Both terms refer to the same thing, but is one preferable to the other?

Hypervisor certainly has the greater sex appeal, suggesting it was coined by a marketing department that saw no hope in promoting a term as coldly technical as virtual machine monitor. But, in fact, hypervisor has a long and established history, dating back almost 50 years. Moreover, it was coined not by a marketing department, but by a software developer.

“Hypervisor” is simply a variant of “supervisor,” a traditional name for the software that controls task scheduling and other fundamental operations in a computer system — software that, in most systems, is now called the OS kernel. Because a hypervisor manages the execution of multiple OSs, it is, in effect, a supervisor of supervisors. Hence hypervisor.

No matter what you call it, a hypervisor creates multiple virtual machines, each hosting a separate guest OS, and allows the OSs to share a system’s hardware resources, including CPU, memory, and I/O. As a result, system designers can consolidate previously discrete systems onto a single system-on-chip (SoC) and thereby reduce the size, weight, and power consumption of their designs — a trinity of benefits known as SWaP.

That said, not all hypervisors are created equal. There are, for example, Type 1 “bare metal” hypervisors, which run directly on the host hardware, and Type 2 hypervisors, which run on top of an OS. Both types have their benefits, but Type 1 offers the better choice for any embedded system that requires fast, predictable response times — most safety-critical systems arguably fall within this category.

The QNX Hypervisor is an example of a Type 1 “bare metal” hypervisor.


Moreover, some hypervisors make it easier for the guest OSs to share hardware resources. The QNX Hypervisor, for example, employs several technologies to simplify the sharing of display controllers, network connections, file systems, and I/O devices like the I2C serial bus. Developers can, as a result, avoid writing custom shared-device drivers that increase testing and certification costs and that typically exhibit lower performance than field-hardened, vendor-supplied drivers.

Adding features, without blowing the certification budget
Hypervisors, and the virtualization they provide, offer another benefit: the ability to keep OSs cleanly isolated from each other, even though they share the same hardware. This benefit is attractive to anyone trying to build a safety-critical system and reduce SWaP. Better yet, the virtualization can help device makers add new and differentiating features, such as rich user interfaces, without compromising safety-critical components.

That said, hardware and peripheral device interfaces are evolving continuously. How can you maintain compliance with safety-related standards like ISO 26262 and still take advantage of new hardware features and functionality?

Enter a new webinar hosted by my inimitable colleague Chris Ault. Chris will examine techniques that enable you to add new features to existing devices, while maintaining close control of the safety certification scope and budget. Here are some of the topics he’ll address:

  • Overview of virtualization options and their pros and cons
     
  • Comparison of how adaptive time partitioning and virtualization help achieve separation of safety-critical systems
     
  • Maintaining realtime performance of industrial automation protocols without directly affecting safety certification efforts
     
  • Using Android applications for user interfaces and connectivity

Webinar coordinates:
Exploring Virtualization Options for Adding New Technology to Safety-Critical Devices
Time: Thursday, March 5, 12:00 pm EST
Duration: 1 hour
Registration: Visit TechOnLine

QNX-powered Audi Virtual Cockpit shortlisted for MWC’s Global Mobile Awards

By Lynn Gayowski

2015 has just started and the QNX auto team is already off to the races. It was only last month at CES that the digital mirrors in our 2015 technology concept car were selected as a finalist for Engadget’s Best of CES Awards, in the category for best automotive tech. Now we’re excited to share some other big, award-related news. Drum roll, please… the QNX-powered Audi virtual cockpit in the 2015 Audi TT has been shortlisted for Mobile World Congress’ prestigious Global Mobile Awards, in the category for best mobile innovation for automotive!

The 2015 Audi TT features a one-of-a-kind, innovative, and just plain awesome, instrument cluster — the Audi virtual cockpit — powered by the QNX operating system. With the Audi virtual cockpit, everything is in view, directly in front of the driver. All the functions of a conventional instrument cluster and a center-mounted head unit are blended into a single, highly convenient, 12.3" display. This approach allows users to interact with their music, navigation, and vehicle information in a simple, streamlined fashion. As you may recall, the QNX-powered Audi virtual cockpit also took home first place in CTIA’s Hot for the Holidays Awards late last year.

Props also to our BlackBerry colleagues, who received 2 nominations themselves for the Global Mobile Awards: BlackBerry Blend in the best mobile service or app for consumers category, and Blackberry for BBM Protected in the best security/anti-fraud product or solution category.

The winners will be announced on March 3 at the Global Mobile Awards ceremony at Mobile World Congress. We can’t wait to hit Barcelona! In the meantime, check out the video below to see the Audi virtual cockpit in action.




Have you heard about Phantom Intelligence yet?

If you haven’t, I bet you will. Phantom Intelligence is a startup that is looking to revolutionize LiDAR for automotive. I hadn’t heard of them either until QNX and Phantom Intelligence found themselves involved in a university project in 2014. They had some cool technology and are just all-around good guys, so we started to explore how we could work together at CES 2015. One thing led to another and their technology was ultimately featured in both the QNX reference vehicle and the new QNX technology concept car.

I knew little about LiDAR at the beginning of the partnership. But as I started to ramp up my knowledge I learned that LiDAR can provide valuable sensor input into ADAS systems. Problem is, LiDAR solutions are big, expensive, and have not, for the most part, provided the kind of sensitivity and performance that automakers look for.

Phantom Intelligence is looking to change all this with small, cost-effective LiDAR systems that can detect not just metal, but also people (handy if you are crossing the street and left your Tin Man costume at home) and that are impervious to inclement weather. As a frequent pedestrian this is all music to my ears.

I am still in no way qualified to offer an intelligent opinion on the pros and cons of competing LiDAR technology so I’m just going on the positive feedback I heard from customers and other suppliers into the ADAS space at CES. Phantom turned out to be one of the surprise hits this year and they are just getting started. That’s why I think you will be hear more about them soon.


Both QNX vehicles showcased at CES 2015 use a LiDAR system from Phantom Intelligence to detect obstacles on the road ahead.

New to 26262? Have I got a primer for you

Driver error is the #1 problem on our roads — and has been since 1869. In August of that year, a scientist named Mary Ward became the first person to die in an automobile accident, after being thrown from a steam-powered car. Driver error was a factor in Mary’s death and, 145 years later, it remains a problem, contributing to roughly 90% of motor vehicle crashes.

Can ADAS systems mitigate driver error and reduce traffic deaths? The evidence suggests that, yes, they help prevent accidents. That said, ADAS systems can themselves cause harm, if they malfunction. Imagine, for example, an adaptive cruise control system that underestimates the distance of a car up ahead. Which raises the question: how can you trust the safety claims for an ADAS system? And how do you establish that the evidence for those claims is sufficient?

Enter ISO 26262. This standard, introduced in 2011, provides a comprehensive framework for validating the functional safety claims of ADAS systems, digital instrument clusters, and other electrical or electronic systems in production passenger vehicles.

ISO 26262 isn’t for the faint of heart. It’s a rigorous, 10-part standard that recommends tools, techniques, and methodologies for the entire development cycle, from specification to decommissioning. In fact, to develop a deep understanding of 26262 you must first become versed in another standard, IEC 61508, which forms the basis of 26262.

ISO 26262 starts from the premise that no system is 100% safe. Consequently, the system designer must perform a hazard and risk analysis to identify the safety requirements and residual risks of the system being developed. The outcome of that analysis determines the Automotive Safety Integrity Level (ASIL) of the system, as defined by 26262. ASILs range from A to D, where A represents the lowest degree of hazard and D, the highest. The higher the ASIL, the greater the degree of rigor that must be applied to assure the system avoids residual risk.

Having determined the risks (and the ASIL) , the system designer selects an appropriate architecture. The designer must also validate that architecture, using tools and techniques that 26262 either recommends or highly recommends. If the designer believes that a recommended tool or technique isn’t appropriate to the project, he or she must provide a solid rationale for the decision, and must justify why the technique actually used is as good or better than that recommended by 26262.

The designer must also prepare a safety case. True to its name, this document presents the case that the system is sufficiently safe for its intended application and environment. It comprises three main components: 1) a clear statement of what is claimed about the system, 2) the argument that the claim has been met, and 3) the evidence that supports the argument. The safety case should convince not only the 26262 auditor, but also the entire development team, the company’s executives, and, of course, the customer. Of course, no system is safe unless it is deployed and used correctly, so the system designer must also produce a safety manual that sets the constraints within which the product must be deployed.

Achieving 26262 compliance is a major undertaking. That said, any conscientious team working on a safety-critical project would probably apply most of the recommended techniques. The standard was created to ensure that safety isn’t treated as an afterthought during final testing, but as a matter of due diligence in every stage of development.

If you’re a system designer or implementer, where do you start? I would suggest “A Developer’s View of ISO 26262”, an article recently authored by my colleague Chris Hobbs and published in EE Times Automotive Europe. The article provides an introduction to the standard, based on experience of certifying software to ISO 26262, and covers key topics such as ASILs, recommended verification tools and techniques, the safety case, and confidence from use.

I also have two whitepapers that may prove useful: Architectures for ISO 26262 systems with multiple ASIL requirements, written by my colleague Yi Zheng, and Protecting software components from interference in an ISO 26262 system, written by Chris Hobbs and Yi Zheng.

Now with ADAS: The revamped QNX reference vehicle

Tina Jeffrey
Since 2012, our Jeep has showcased what QNX technology can do out of the box. We decided it was time to up the ante...

I walked into the QNX garage a few weeks ago and did a double take. The QNX reference vehicle, a modified Jeep Wrangler, had undergone a major overhaul both inside and out — and just in time for 2015 CES.

Before I get into the how and why of the Jeep’s metamorphosis, here’s a glimpse of its newly refreshed exterior. Orange is the new gray!



The Jeep debuted in June 2012 at Telematics Detroit. Its purpose: to show how customers can use off-the-shelf QNX products, like the QNX CAR Platform for Infotainment and QNX OS, to build a wide range of custom infotainment systems and instrument clusters, using a single code base.

From day one, the Jeep has been a real workhorse, making appearances at numerous events to showcase the latest HMI, navigation, speech recognition, multimedia, and handsfree acoustics technologies, not to mention embedded apps for parking, internet radio streaming, weather, and smartphone connectivity. The Jeep has performed dependably time and time again, and now, in an era where automotive safety is top of mind, we’ve decided to up the ante and add leading-edge ADAS technology built on the QNX OS.

After all, what sets the QNX OS apart is its proven track record in safety-certified systems across market segments — industrial, medical, and automotive. In fact, the QNX OS for Automotive Safety is certified to the highest level of automotive functional safety: ISO 26262, ASIL D. Using a pre-certified OS component is key to the overall integrity of an automotive system and makes system certification much easier.

The ultimate (virtual) driving experience
How better to showcase ADAS in the Jeep, than by a virtual drive? At CES, a 12-foot video screen in front of the Jeep plays a pre-recorded driving scene, while the onboard ADAS system analyzes the scene to detect lane markers, speed signs, and preceding vehicles, and to warn of unintentional lane departures, excessive speed, and imminent crashes with vehicles on the road ahead. Onboard computer vision algorithms from Itseez process the image frames in real time to perform these functions simultaneously.

Here’s a scene from the virtual drive, in which the ADAS system is tracking lane markings and has detected a speed-limit sign:



If the vehicle begins to drift outside a lane, the steering wheel provides haptic feedback and the cluster displays a warning:



The ADAS system includes Elektrobit EB Assist eHorizon, which uses map data with curve-speed information to provide warnings and recommendations, such as reducing your speed to navigate an upcoming curve:



The Jeep also has a LiDAR system from Phantom Intelligence (formerly Aerostar) to detect obstacles on the road ahead. The cluster displays warnings from this system, as well as warnings from the vision-based collision-detection feature. For example:



POSTSCRIPT:
Here’s a short video of the virtual drive, taken at CES by Brandon Lewis of Embedded Computing Design, in which you can see curve-speed warnings and lane-departure warnings:



Fast-boot camera
Rounding out the ADAS features is a rear-view camera demo that can cold boot in 0.8 seconds on a Texas Instruments Jacinto 6 processor. As you may recall, NHTSA has mandated that, by May 2018, most new vehicles must have rear-view technology that can display a 10-by-20 foot area directly behind the vehicle; moreover, the display must appear no more than 2 seconds after the driver throws the vehicle into reverse. Backup camera and other fastboot requirements such as time-to-last-mode audio, time-to-HMI visible, and time-to-fully-responsive HMI are critically important to automakers. Be sure to check out the demo — but don’t blink or you’ll miss it!

Full-featured infotainment
The head unit includes a full-featured infotainment system based on the QNX CAR Platform for Infotainment and provides information such as weather, current song, and turn-by-turn directions to the instrument cluster, where they’re easier for the driver to see.



Infotainment features include:

Qt-based HMI — Can integrate other HMI technologies, including Elektrobit EB Guide and Crank Storyboard.

Natural language processing (NLP) — Uses Nuance’s Vocon Hybrid solution in concert with the QNX NLP technology for natural interaction with infotainment functions. For instance, if you ask “Will I need a jacket later today?”, the Weather Network app will launch and provide the forecast.

EB street director — Provides embedded navigation with a 3D map engine; the map is synched up with the virtual drive during the demo.

QNX CAR Platform multimedia engine — An automotive-hardened solution that can handle:
  • audio management for seamless transitions between all audio sources
  • media detection and browsing of connected devices
  • background synching of music for instant media playback — without the need for the synch to be completed

Support for all smartphone connectivity options — DLNA, MTP, MirrorLink, Bluetooth, USB, Wi-Fi, etc.

On-board application framework — Supports Qt, HTML5, APK (for Android apps), and native OpenGL ES apps. Apps include iHeart, Parkopedia, Pandora, Slacker, and Weather Network, as well as a Settings app for phone pairing, over-the-air software updates, and Wi-Fi hotspot setup.

So if you’re in the North Hall at CES this week, be sure to take a virtual ride in the QNX reference vehicle in Booth 2231. Beneath the fresh paint job, it’s the same workhorse it has always been, but now with new ADAS tech automakers are thirsting for.

Volkswagen and LG Gear up with QNX

Design wins put QNX technology in a wide range of infotainment systems, instrument clusters, and ADAS solutions.

Earlier today, QNX Software Systems announced that infotainment systems powered by the QNX Neutrino OS are now shipping in several 2015 Volkswagen vehicle models, including the Touareg, Passat, Polo, Golf, and Golf GTI.

The systems include the RNS 850 GPS navigation system in the Volkswagen Touareg, which recently introduced support for 3D Google Earth maps and Google Street View. The system also offers realtime traffic information, points-of-interest search, reverse camera display, voice control, Bluetooth connectivity, rich multimedia support, four-zone climate control, a high-resolution 8-inch color touchscreen, and other advanced features.

Bird's eye view: the RNS 850 GPS navigation system for the Volkswagen Touareg SUV. Source: VW

“At Volkswagen, we believe deeply in delivering the highest quality driving experience, regardless of the cost, size, and features of the vehicle,” commented Alf Pollex, Head of Connected Car and Infotainment at Volkswagen AG. “The scalable architecture of the QNX platform is well-suited to our approach, enabling us to offer a full range of infotainment systems, from premium level to mass volume, using a single, proven software base for our Modular Infotainment Modules (MIB) and the RNS 850 system.”

QNX and LG: a proven partnership
QNX also announced that LG Electronics’ Vehicle Components (VC) Company will use a range of QNX solutions to build infotainment systems, digital instrument clusters, and advanced driver assistance systems (ADAS) for the global automotive market.

The new initiative builds on a long history of collaboration between LG and QNX Software Systems, who have worked together on successful, large-volume telematics production programs. For the new systems, QNX will provide LG with the QNX CAR Platform for Infotainment, the QNX Neutrino OS, the QNX OS for Automotive Safety, and QNX Acoustics for Voice.

“QNX Software Systems has been our trusted supplier
for more than a decade... helping LG deliver millions
of high-quality systems to the world’s automakers”

— Won-Yong Hwang, LG's VC Company

“QNX Software Systems has been our trusted supplier for more than a decade, providing flexible software solutions that have helped LG deliver millions of high-quality systems to the world’s automakers,” commented Won-Yong Hwang, Director and Head of AVN development department, LG Electronics’ VC Company. “This same flexibility allows us to leverage our existing QNX expertise in new and growing markets such as ADAS, where the proven reliability of QNX Software Systems’ technology can play a critical role in addressing automotive safety requirements.”

Visit the QNX website to learn more about the Volkswagen and LG announcements.

First impressions are the most lasting

Lynn Gayowski
Lynn Gayowski
Preparations for 2015 CES in January are in full swing at QNX Software Systems, both in and out of the garage. Thus, with fond memories in mind, the time has come to graduate our 2014 technology concept car, based on a Mercedes-Benz CLA45 AMG, to a CES Car of Fame. The Mercedes will always hold a special place in my heart, as it was the first technology concept car I got to experience hands-on since joining the QNX team.

If I were to describe this concept car with one word, I would choose "user-centric". (I love how hyphens can really help in these succinct situations.) We designed the infotainment system and digital instrument cluster with a vision to help drivers interact in new and seamless ways with their vehicles. This concept car is a great example of how QNX technology can enable a more natural user experience.

As we hum a few bars of Sarah McLachlan's classic I Will Remember You, let's look back at some highlights.

The first thing that catches your eye is the matte exterior and stylish lines, exuding just a soupçon of James Bond:

QNX 2014 technology concept car - exterior

But let's get to the technology. At 21" by 7" the touch screen is a showstopper. It brings a rich, graphical interface to both driver and passenger. This is where you can really see the user-centric design, with options to control the infotainment system with the touch screen, physical buttons, a jog wheel, or voice commands:

QNX 2014 technology concept car - infotainment system

We really wanted to use the car to highlight the flexibility of the QNX CAR Platform and how customers can easily modify features using the platform's pre-integrated technologies. A great example of this is the car's navigation system. The car actually has 4 different navigation solutions installed, demonstrating how automakers can choose a solution best suited for a particular geography or language. EB Street Director is featured in this photo:

QNX 2014 technology concept car - navigation

The infotainment system may wow you, but don't forget about the cluster. The Mercedes has a dynamically reconfigurable digital instrument cluster that can display turn-by-turn directions, notifications of incoming phone calls, video from the car's front and rear cameras, as well as a tachometer, speedometer, and other virtual instruments, at a full 60 frames per second. The cluster can even notify you of incoming text messages on your phone. Simply push a steering-wheel button, and the system will read the message aloud, so you can keep your eyes on the road.

QNX 2014 technology concept car - cluster

Another cool feature is the cluster's "virtual mechanic" which lets you access vehicle info like tire pressure, brake wear, and fuel, oil, and windshield fluid levels:

QNX 2014 technology concept car - virtual mechanic

What car of the future would be complete without connectivity? A custom "key fob" app allows you to remotely access system maintenance information, control the media player, locate the car on a map, and perform a number of actions like starting the car and opening window. This cross-platform HTML5 app can run on any smartphone or tablet:

QNX 2014 technology concept car - key fob

As an overall view of the Mercedes, one of my favourite pieces is this video by Sami Haj-Assaad of AutoGuide, where he takes a look at the design and features of the car. His closing quote really sums up the innovation showcased: "The infotainment industry is going through a huge upgrade, with QNX leading the charge."



I hope you enjoyed the 2014 QNX technology concept car. Watch for the reveal of our 2015 technology concept car January 6 at CES in Las Vegas!

Automotive technology

Automotive

Labels

1904 Columbus 1940 Ford 1964 Worlds Fair 1969 Camaro 1969 Dodge Coronet Super Bee 2014 2016 Sales 2017 The Bad 8 2017 The Good 12 3 wheeler 4 G 407 407 ex2 427 AC Cobra 440 six pack 442 4x 4x4 55 Chevy 57 Chevy 5th wheel AAR abandoned abs abuse by law enforcement AC Cobra Acadian accessories accident Acoustic processing Active noise control (ANC) Acura Acura Reviews adaptive cruise control ADAS Adobe AIR ads adventurers advertising aerodynamics Aircraft engines airlines airplane Airstream Alfa Alfa Romeo Alfa-Romeo All Cars Rankings All SUV Rankings All Vehicle Rankings Alpina Alpine AMBR winner ambulance AMC America's greatest photographers American LaFrance amphib AMX AMX-3 Andorra Andrew Poliak Android Andy Gryc anti lock braking system App World Apps Arab-Supercar area controller Ariel-Nomad ARM-based devices art Art Arfons Art Deco artist Asset management system Aston Martin Aston-Martin atv auction Audi Audi Reviews audio Augmented reality Austin Austin Healey Australia Austria Auto Accident Attorney auto car donate auto car donation Auto Donate Auto Donation California Auto hobby books Auto Sales By Brand auto show Auto Story in Pictures Wednesday auto taxi Autocar automobile automobile donation AUTOMOBILE INSURANCE automobile parts automobile safety system automobule donate Autonomous cars Awards awesome B 29 B 52 BAIC Baja racing Baker banners barn find barn finds barnfind barnfinds Barracuda Barris barum BatBerry Batman Batteries battery beautiful engine Beautiful paint before and after Belgium Bello's belly tanker Bentley Best Sellers Best Selling American Cars Best Selling Cars Best Selling Luxury Best Selling SUVs Best Selling Trucks Best Selling Vehicles bicycle bicycles Big 3 Swap Meet big wheel bike messengers bike rack biofuel biography BlackBerry BlackBerry Radar BlackBerry-QNX blink code blink code checkup blink code error blink code troubleshooting Blog blogs BMW BMW Audi Mercedes Benz Daimler jeep GM toyota Chrysler VW volkswagon nissan infiniti ford unique rare Bntley boardtrack Boats boattail Bonneville book review bookmobile Boss 302 Boss 429 brake brakes braking system Brand Marketshare brass era breedlove Brewster Brian Salisbury Bricklin bridge British Britten brochure Bugatti Buick Bulgaria burnout bus Buses buying selling cash tips money advice BYD c C-type Jag Cadillac Cadillac Reviews Camaro Can Am Canada Canada 2016 Sales Canada All Cars Rankings Canada All SUV Rankings Canada All Vehicle Rankings Canada Auto Sales Canada Auto Sales By Brand Canada Best Sellers Canada Compact Car Sales Canada December 2016 Canada Entry Luxury Car Sales Canada February 2017 Canada January 2017 Canada Large Car Sales Canada Large Luxury Car Sales Canada Large Luxury SUV Sales Canada Large SUV Sales Canada March 2017 Canada Midsize Car Sales Canada Midsize Luxury Car Sales Canada Midsize Luxury SUV Sales Canada Midsize SUV Sales Canada Minivan Sales Canada November 2016 Canada October 2016 Canada Premium Sporty Car Sales Canada September 2016 Canada Small Luxury SUV Sales Canada Small SUV Sales Canada Sporty Car Sales Canada Truck Sales Canada Van Sales Canada Worst Sellers car care car chase scene car clubs car collections car collectors Car Donate car donate california car donation Car Donations California Car or the Future car wash carbs carrozzeria cart caterpillar tracked vehicle CCS celebrities celebrity Certicom CES CESA 2012 CESA 3.0 Chademo Challenger Chaparral Charger Charity Charity auction charity car donation Charity Car Donation Program Charity Car With Your Credit Card cheating Checker Chery Chevelle Chevrolet Chevrolet Reviews Chevy 2 China chopper Christian Sobottka Christie Christmas Chrysler Citroen Citroën classics cleaning clip Cloud connectivity CO2 Cobra Cobra Daytona Coupe Cobra Mustang Cobra Torino COE Cogent collection collector College Colombia commercial common rail direct injection Compact Car Sales companies comparison compliment components components of anti-lock braking system concept Concept car Concept team Connected Car construction Consumer Electronics Show consumers Contest convertible Coronet Corvair corvette Corvettes Costa Rica coupe coventry cragar crash crde crdi Croatia Crosley crossover Cruise 4 Kids crypto cryptography CTS Cuda Cunningham Curtiss Aerocar Custom customer satisfaction cutaway display cycle car Cyclone Cyprus Czech Republic dacia Daihatsu Dan Gurney dart Datsun Daytona ddis DDS dealers Dealership Dean Martin December 2016 Degree delivery truck Delorean Delphi Demon Denmark Derek Kuhn design deuce devices Dick Landy dicor Digital instrument clusters digital spark ignition Diner with car theme direction injection Disney display diy Dodge domain controller Donate Donate A Car Tax Deduction Donate Automobile To Charity Donate Car To Charity Tax Deduction Donate Vehicles To Charity donation donation auto car donation vehicles to charity Doug Newcomb Drag racing drag strip Dragonsnake dragsters DREAM drifting Driven Driver distraction driving assistance drunk driver DS dtsi dual carbs dual engined dualie Ducati dump truck dvla E-type Jag ECC economy ECU Ecuador electric electric car Electric cars electromagnetic brake Elliptic Curve Cryptography EMF Emil Dautovic Endurance racing engine engine accessories Engine sound enhancement engines Entry Luxury Car Sales enzo Erskine Essex estate Estonia etc EUCAR Europe EV Business Case Evel Knievel event experience experiment extreme sports video F1 Factor-Aurelio Factory lightweight Factory race car Fairlane Falcon Fast boot Fast-Charging FCA FCEV February 2017 Ferrari Fiat Fiat Botafogo finance Finland fips fire engine fire fighting fire trucks Firebird Firestone firetrucks Fisker flamejob fleet management Ford ford escort Ford Reviews Fordson tractor Forecasts FOTA found around the neighborhood France Franklin Free Car Donation Freescale french fuel fuel injection fuel injection system Fuel Tanker fuel-cell fun Funny car Futurliner gadgets Galpin Ford game garage garner gas mileage gas stations Gasser Gauges GCBC Awards GCBC Most Popular Geely Gene Winfield General Motors German Germany give your car to charity GM GM MyLink GNX Go cart good news Goodwood Goodyear gourmet food vans GPU Graham Gran Prix Grand National Roadster Show 2017 Grand Sport Corvette Graph Great Wall Motors Greece green Green car Gremlin GT GT 350 GT 40 GT 500 gt40 GTO GTX Gulf race car Gullwing Guy Martin Hands-free systems Harley Harley Davidson hauler Hawaii helicopter hemi hemmings Hennessey Henry J hero Hertz hire Hispano-Suiza historical history HMIs Holden Hollywood Holman Moody Honda Honda Reviews Honda Sales Hong Kong Hood ornaments hood scoops Horizon 2020 horse carriage horse wagon host blog info about auto Hot rods Hot Wheels Housekeeping How To Donate How To Donate A Car For Tax Deduction How To Donate Car To Charity how to donation car to charity HRM HTML5 Hudson Hummer humor humour Humvee Hungary Hupmobile Hurst Hurst SC Rambler hybrid Hybrid cars hydrogen hypervisor Hyundai Hyundai Reviews Ian Roussel Iceland ID4 Car ignition IIoT immitation Impala india Indian Indianapolis industry news infiniti Infiniti Reviews Info infographic informative Infotainment Injury Lawyer Innotrans innova innovation innovative instrument panel insurance intake Intel interior International Harvester Internet of Things Internet radio invitation IoT Ireland iris iris details iris engine details iris technical Isetta Iskenderian Isky Isle of Man ISO 26262 Israel issues Isuzu Italian Italy ITS ITU IVI Jaguar January 2017 Japan Japanese Javelin Jay Leno Jean-François Tarabbia Jeep Jeep Wrangler JLR John D'Agostino John Deere John Wall Justin Moon jv Kaivan Karimi Kandi kawasaki Ken Block Kerry Johnson Kia kids Kim Cairns Kissel Kombi Kroy Zeviar Kurtis La Carrera Panamerica lace paint Lamborghini Lamborghini Revuelto Lancia Land Cruiser Land Rover Land Rover Sales land speed record holder Land-Rover Large Car Sales Large Luxury Car Sales Large Luxury SUV Sales Large SUV Sales Larry Wood LaSalle Latvia launch law enforcement lawnmower laws Le Mans legends Leno Lexus license plates Lidar Life Insurance limited Lincoln Lincoln MKZ Linda Campbell Linda Vaughn links lists Lithuania live Loans Locomobile logging train logging trucks Lola London to Brighton Looking for EV's Los Angeles Lotus lowrider LSR Luxembourg luxury Lyft Lynn Gayowski Mach 1 machine shop Mack Mad Max magazine magazines magic iris mags Malaysia March 2017 Mario Andretti Mark Donohue marketing Marketshare Maserati Matt Watson Maverick Mazda Mazda Reviews MB McLaren mechanic Megan Alink meme Memory Lane Men Micro Mercedes Mercedes Benz Mercedes-Benz Mercer Cobra Mercury Metallica Metro Mexico Miata microkernal Midsize Car Sales Midsize Luxury Car Sales Midsize Luxury SUV Sales Midsize SUV Sales Military Miller race car mini mini bike miniature Minivan Sales MirrorLink mission-critical Mitsubishi Miura MMI Mobile connectivity Mobile World Congress mod top Model Model A model T modifications Momo Monaco Monster Truck Moon Moon eyes Mopar Mopar parts Morgan Morocco morons mot Motor shows motor wheel Motorcycle Motorcycles motorhomes Mouse movie movies mpv Multicore Munsters Muntz muscle cars musclecars museum music video Mustang NAIAS Nancy Young Nascar Nash Navigation naza neglec neglected Netherlands new tv show New York New Zealand news ni Nissan Nissan Reviews Nomad Norway nos nose art Nova November 2016 Nurburgring Object Management group October 2016 off roading offenhauser Oldsmobile OMG Online College OnStar Opel Open source Open standards OpenGL ES option orders original owner Ormond Beach land speed racing pace car Packard Pagani Paige pamphlet panel paint Paris to Peking race parking parts Patryk Fournier Paul Leroux Paul Newman Paul Sykes Pebble Beach pedal car perodua personal Peter McCarthy petrol petroliana Peugeot Phoenix Injury photographer photography pics pictures Pierce Arrow Pike's Peak Pinin Farina pinstriping Pit row Pits Pixar PKI plank road PlayBook Plymouth Point Grey Camera Poland pole wheel police Polysynch Pontiac Porsche Porsche 917 Porsche Carrera Portugal POSIX pre 1930's gas station Premium Sporty Car Sales President of the USA Preview prices prius project prooject Proton prototype PSA Peugeot Citroen public key cryptography Pullman QNX QNX CAR QNX Garage QNX OS Qualcomm quiz quote race cars racing racing. LSR Radar radio Raid Data rail railcars railroad ralliart Rally rallying Ram range rover rant Rapid Transit System advertsing rare Real time Innovations recall recommended shop record setter Red Bull Sports Reference vehicle Reliability Rémi Bastien RemoteLink Renault Renesas Renntransporter rentals REO repair reports resarch research restoration restoration shop review Richard Bishop Ridler Award Winner rims river bank cars road and highway Road Runner roadster Robot OS Robot wars Roewe Roger Penske Rolls Royce Romain Saha Romania ROS Roth RTI RTI Connext rumble seat Russia Ruxton RV Safety Safety systems safety-certified sales Sales By Model Sales Stats samba sampan Saoutchik Satellite satnav Scaglietti scallops Scat Pack SCCA racecar School bus sci-fi Scooter SCORE Baja trucks Scott Pennock Scout sculpture Security sedan segway semi sensor extension cable sensor fusion September 2016 service service repair automotive vehicle car buying selling mission statement blog free broker shay drive locomotive Shelby shifter shop Show cars sidecars signs skateboarding Skoda slicks slingshot dragster Slovakia Slovenia Small Luxury SUV Sales Small SUV Sales Smart Smartphones snow machines snowmobile Soapbox South Africa South Korea Sox and Martin Spain spare tire spark ignition spark plug spark plugs Spatial auditory displays special edition Mustangs Speech interfaces speed limit Speed Record speedfest speedster sports car sports cars Sporty Car Sales spy shots spyker Sri Lanka SS SS/AH Stagecoach Stanley Station Wagon steam locomotive steam powered steam shovel steampunk steering wheel Steve McQueen Stig Stirling Moss Stolen streamliner street cars Street Van studebaker stunt stunts Stutz Stutz Blackhawk Subaru Sunbeam Super Bee Super Stock Superbird Supercar supercharger survey suv Suzuki Sweden Swift Switzerland System development Life Cycle Tablets Tach takeover tank tata tata magic iris tata vehicles tax Tax Deduction For Car Donation taxi taxi cab TCS tdi teardrop technical technology Telematics Telematics Detroit Telematics Update tempo Tempo Matador Terlingua Racing Team Terry Staycer Tesla test testdrive Texas Instruments The Race Of Gentlemen Thomas Bloor thoughts three wheeler Thunderbird ticket Tiger Tim Neil Tina Jeffrey tips tires tool tool kit toolbox tools Top Gear top ten list Torino tour bus tourbus towtruck Toyota Toyota Entune Toyota Reviews tractor trailer train train wreck trains Trans Am transmission Transporter Traval trike Triumph trivia trolley Troy Trepanier truck Truck Sales trucking trucks Tucker turbocharger turbojet turbonique Turkey tv tv cars twin spark type 1 type 2 tyres UAE Uber UK UK Auto Sales UK Best Sellers uk market Ukraine Unimog unique University of Waterloo Unser unusual unveil upgrade US US 2016 Sales US All Cars Rankings US All SUV Rankings US All Vehicle Rankings US Auto Sales US Auto Sales By Brand US Best Sellers US Compact Car Sales US December 2016 US Entry Luxury Car Sales US February 2017 US January 2017 US Large Car Sales US Large Luxury Car Sales US Large Luxury SUV Sales US Large SUV Sales US March 2017 US Midsize Car Sales US Midsize Luxury Car Sales US Midsize Luxury SUV Sales US Midsize SUV Sales US Minivan Sales US Navy US November 2016 US October 2016 US September 2016 US Small Luxury SUV Sales US Small SUV Sales US Sporty Car Sales US Truck Sales US US Auto Sales US Van Sales US Worst Sellers USA used cars V2X van Van Sales vauxhall VeDeCoM Vehicle Donation California Velodyne Vespa Video vintage vintage racing Virtual mechanic Virtualization VOIP Guide Volkswagen Volkswagen Reviews Volkswagen Sales Volvo Von Dutch vote VW VW bug W3C wagon train wall of death washer washer fluid Watson's Webinars website what is donation what is it wheel speed sensor wheelchair White williams Willys windshield washer wing Wireless framework women woodlight headlights Woody work truck working principle of anti-lock braking system workshop World Worst Sellers wreck Wrongful Death WW1 WW2 XK SS Yoram Berholtz Yoshiki Chubachi Z 11 Z-28 Z28 zamboni ZL1 Zotye