Showing posts with label Digital instrument clusters. Show all posts
Showing posts with label Digital instrument clusters. Show all posts

Bringing the power of “and” to the car

QNX unveils a new platform at TU-Automotive Detroit and celebrates an acoustics milestone

Paul Leroux
Some people assume that, when it comes to cars, QNX is mostly about infotainment. Or telematics. Or safety. Or security. But in reality, QNX is about all of these things. So, for a better picture of what QNX brings to the car, simply replace all of those ‘or’s with ‘and’s. For an even better picture, add more things to the list. Like instrument clusters. And handsfree systems. And virtualization.

When you put all of these ‘and’s together, you begin to realize that QNX is a platform for the entire automotive cockpit. So why is that important? Well, more than ever, cars are defined by their software. In fact, automakers are now building cars in which half a dozen systems need a high-level OS. Using a single OS platform for all of those systems can consolidate development efforts, increase interoperability, encourage code reuse, reduce training costs, boost productivity, and just plain make things easier. Of course, it doesn’t hurt if that same platform is also secure, standards-based, and production-proven in over 60 million cars.

So why am I going on about this? Because this week, at TU-Automotive Detroit, QNX is showcasing the full breadth of its automotive technology. Visitors to our booth will see demonstrations of ADAS, instrument clusters, infotainment, acoustics, smartphone integration, V2X, remote SIM management — the list goes on. Highlights include the latest QNX technology concept vehicle, which boasts a voice-controlled instrument cluster (man, I’d love one of those) and acoustics technology that allows a driver to talk to back-seat passengers without having to raise his voice or turn around — even if the car is driving at highway speeds. How cool is that?

That’s me, in the driver’s seat of an SUV, speaking to my colleague Tina, who is sitting in the back row. Thanks to
QNX acoustics technology, she can hear me clearly, even though I am speaking normally and looking straight ahead.

New platform for instrument clusters
Of course, we can’t show up at a major auto event without bringing something new for developers. And so, today, we are unveiling the latest addition to our portfolio of automotive safety products, the QNX Platform for Instrument Clusters.

QNX is already a proven player in the digital cluster market. Since 2009, our OS technology has been powering clusters in brands like Alfa Romeo, Audi, Corvette, Jaguar, and Range Rover. (Check out my recent post for a retrospective on QNX-powered clusters.) The new platform builds on this experience, enabling QNX to offer a comprehensive solution for cluster developers, which includes:

  • The QNX OS for Safety, an ISO 26262-certified OS and toolchain that supports all the automotive safety integrity levels, from ASIL A to D, required for clusters and other critical systems
  • A 2D/3D graphics framework based on the OpenGL standard and set to be certified to the ISO 26262 functional safety standard
  • A software framework that protects safety-critical cluster functions from interference by other software components, enabling greater reliability and easier system-level certification
  • A reference implementation, with source code, that gives developers a jumpstart on building fully digital instrument clusters

To get the full story, check out this morning’s press release.

The digital instrument cluster in the QNX concept vehicle, which is based on a Toyota Highlander. QNX has just
unveiled a new platform that allows instrument clusters with ISO 26262 safety requirements to leverage the
full power of accelerated 2D/3D graphics.

50 million systems, you say?
Hands-free systems may be common, but delivering a high-quality hands-free experience can be notoriously difficult. Cars are noisy beasts, and the cacophony created by tires, fans, vents, and open windows can play havoc with any system that has to process voice signals.

What to do? Well, for over 50 million infotainment and telematics systems, automakers have solved the problem with QNX acoustics technology. QNX acoustics offers patented algorithms for echo cancellation, noise reduction, and other technologies to ensure crisp, clear voice communications, even in the harsh sonic environment of the car. In fact, it has become so popular that, on average, it ships in an automotive system every 2.5 seconds. (So, can you do the math and tell me how many systems that adds up to each month?)

Did I mention? The QNX acoustics portfolio does far more than process voice signals. For instance, it includes the QNX Acoustics Management Platform, which offers unified management of all acoustics in the car, enabling customers to reduce the cost, complexity, and time-to-production of audio signal-processing systems. For more details, read this morning’s press release.

NXP i.MX 8 DV — alive and kicking

The team at NXP have really impressed me with how quickly they were able to bring up the new i.MX 8 DV. If you haven’t heard about it, the DV is a development vehicle that NXP introduced in advance of their upcoming family of i.MX 8 processors, and this thing is a beast.

Mapping closely to the upcoming production device, the DV sports dual A72 and quad A53 cores, along with a host of M-cores and dual Vivante GC7000XSVX GPUs. Combined graphics processing jumps sixfold over the previous generation of i.MX devices. The device also has a strong hardware isolation story: 16 partitions are available to map the various hardware blocks on the device and guarantee isolation between them. This architecture greatly facilitates virtualization and even the ability to partition hardware independent of a hypervisor.

Why is this so great? Chips this powerful can span multiple displays in the vehicle. You could have an infotainment system and a digital instrument cluster running on a single i.MX8. Because you don’t have to worry about virtualizing a single GPU (which is quite the challenge), you can carve up the chip’s graphics and processing power to isolate the infotainment system from the cluster. This, in turn, minimizes your scope of certification. Achieving ISO 26262 for a cluster is daunting enough; achieving it for a complex infotainment system as well is off the scale.

This device marks a change in how QNX Software Systems and NXP work together. For the first time NXP is bringing up a new chip on the QNX OS and Linux in parallel. Usually, Linux come first, but not this time. I am, needless to say, delighted by this level of cooperation between our two companies.

At FTF, NXP demonstrated the i.MX 8DV, and it looked great.

Advanced 3D graphics on an i.MX 8DV.

A matter of convergence: building digital instrument clusters with Qt on QNX

Tuukka Turunen
Guest post by Tuukka Turunen, Head of R&D at The Qt Company

The Qt application framework is widely used in automotive infotainment systems with a variety of operating system and hardware configurations. With digital instrument clusters becoming increasingly common in new models, there are significant synergies to be gained from using the same technologies for both the infotainment system and the cluster. To be able to do this, you need to choose technologies, such as Qt and QNX, that can easily address the requirements of both environments.

Qt is the leading cross-platform technology for the creation of applications and user interfaces for desktop, mobile, and embedded systems. Based on C++, the Qt framework provides fast native performance via a versatile and efficient API. It’s easy to create modern, hardware-accelerated user interfaces using Qt Quick user interface technology and its QML language. Qt comes with an integrated development environment (IDE) tailored for developing applications and embedded devices. Leveraging the QNX Neutrino Realtime OS to run Qt provides significant advantages for addressing the requirements of functional safety.

There is a strong trend in the automotive industry to create instrument clusters using digital graphics rather than traditional electromechanical and analog gauges. Unlike the first digital clusters in the 70s, which used 7-segment displays to indicate speed, today’s clusters typically show a digital representation of the analog speedometer along with an array of other information, such as RPM, navigation, vehicle information, and infotainment content. The benefits compared to analog gauges are obvious; for example, it is possible to adapt the displayed items according to the driver’s needs in different situations, or easily create regional variants, or adapt the style of the instrument cluster to the car model and user’s preferences.

A unified experience — for both developers and users
Traditionally, the speedometer and radio have been two very different systems, but today their development paths are converging. Convergence will drive the need for consistency as otherwise the user experience will be fragmented. To meet the needs of tomorrow’s vehicles, it is essential that the two screens are aware of each other and interoperate. It is also likely that, while these are converging, certain items will remain specific to each domain. Furthermore, the convergence will help accelerate time-to-market for car manufacturers by offering simplified system design and faster development cycles.

Qt, which is already widely used in state-of-the-art in-vehicle infotainment systems and many other complex systems, is an excellent technology to unify the creation of these converging systems. By leveraging the same versatile Qt framework and tools for both the cluster and the infotainment system, it is possible to achieve synergies in the engineering work as well as in the resulting application. With the rich graphics capabilities of Qt, creating attractive user interfaces for a unified experience across all screens of the vehicle cockpit becomes a reality.


Cluster demonstrator built with Qt 5.6.

Maximal efficiency
Qt has been used very successfully in QNX-based automotive and general embedded systems for a long time. To show how well Qt 5.6 and our latest Qt based cluster demonstrator run on top of the QNX OS, which is pre-certified to ISO 26262 ASIL D, we brought them together on NXP’s widely used i.MX 6 processor. As the cluster HMI is made with Qt, it runs on any platform supported by Qt, including the QNX OS, without having to be rewritten.

The cluster demonstrator leverages Qt Quick for most of the cluster and Qt 3D for the car model. The application logic is written in C++ for maximal efficiency. By using the Qt Quick Compiler, the QML parts run as efficiently as if they too were written in C++, speeding up the startup time by removing the run-time compilation step.

The following video presents the cluster demonstrator running on the QNX OS and the QNX Screen windowing system:



The QNX OS for Safety has been certified to both IEC 61508 SIL 3 and ISO 26262 ASIL D, so it provides a smooth and straightforward path for addressing the functional safety certification of an automotive instrument cluster.

Qt 5.6 has been built for the QNX OS using the GCC toolchain provided by QNX Software Systems. The display of the cluster is a 12.3" HSXGA (1280×480) screen and the CPU is NXP’s i.MX 6 processor, which is well-suited to automotive instrument clusters.

Our research and development efforts continue with a goal to make it straightforward to build sophisticated digital instrument clusters with Qt. We believe that Qt is the best choice for building infotainment systems and clusters, but that it is particularly beneficial when used in both of these. Please contact us to discuss how Qt can be used in automotive, as well as in other industries, or to evaluate the latest Qt version on the QNX platform.

Visit qt.io for more information on Qt.



About Tuukka
Tuukka Turunen leads R&D at The Qt Company. He holds a Master’s of Science in Engineering and a Licentiate of Technology from the University of Oulu, Finland. He has over 20 years of experience working in a variety of positions in the software industry, especially around connected embedded systems.

Goodbye analog, hello digital

Since 2008, QNX has explored how digital instrument clusters will change the driving experience.

Paul Leroux
Quick: What do the Alfa Romeo 4C, Audi TT, Audi Q7, Corvette Stingray, Jaguar XJ, Land Rover Range Rover, and Mercedes S Class Coupe have in common?

Answer: They would all look awesome in my driveway! But seriously, they all have digital instrument clusters powered by the QNX Neutrino OS.

QNX Software Systems has established a massive beachhead in automotive infotainment and telematics, with deployments in over 60 million cars. But it’s also moving into other growth areas of the car, including advanced driver assistance systems (ADAS), multi-function displays, and, of course, digital instrument clusters.

Retrofitting the QNX reference
vehicle with a new digital cluster.
The term “digital cluster” means different things to different people. To boomers like myself, it can conjure up memories of 1980s dashboards equipped with less-than-sexy segment displays — just the thing if you want your dash to look like a calculator. Thankfully, digital clusters have come a long way. Take, for example, the slick, high-resolution cluster in the Audi TT. Designed to display everything directly in front of the driver, this QNX-powered system integrates navigation and infotainment information with traditional cluster readouts, such as speed and RPM. It’s so advanced that the folks at Audi don’t even call it a cluster — they call it virtual cockpit, instead.

Now here’s the thing: digital clusters require higher-end CPUs and more software than their analog predecessors, not to mention large LCD panels. So why are automakers adopting them? Several reasons come to mind:

  • Reusable — With a digital cluster, automakers can deploy the same hardware across multiple vehicle lines simply by reskinning the graphics.
  • Simple — Digital clusters can help reduce driver distraction by displaying only the information that the driver currently requires.
  • Scalable — Automakers can add functionality to a digital cluster by changing the software only; they don’t have to incur the cost of machining or adding new physical components.
  • Attractive — A digital instrument cluster can enhance the appeal of a vehicle with eye-catching graphics and features.
     
In addition to these benefits, the costs of high-resolution LCD panels and the CPUs needed to drive them are dropping, making digital instrument clusters an increasingly affordable alternative.

2008: The first QNX cluster
It’s no coincidence that so many automakers are using the QNX Neutrino OS in their digital clusters. For years now, QNX Software Systems has been exploring how digital clusters can enhance the driving experience and developing technologies to address the requirements of cluster developers.

Let’s start with the very first digital cluster that the QNX team created, a proof-of-concept that debuted in 2008. Despite its vintage, this cluster has several things in common with our more recent clusters — note, for example, the integrated turn-by-turn navigation instructions:



For 2008, this was pretty cool. But as an early proof-of-concept, it lacked some niceties, such as visual cues that could suggest which information is, or isn’t, currently important. For instance, in this screenshot, the gauges for fuel level, engine temperature, and oil pressure all indicate normal operation, so they don’t need to be so prominent. They could, instead, be shrunk or dimmed until they need to alert the driver to a critical change — and indeed, we explored such ideas soon after we created the original design. As you’ll see, the ability to prioritize information for the driver becomes quite sophisticated in subsequent generations of our concept clusters.

Did you know? To create this 2008 cluster, QNX engineers used Adobe Flash Lite 3 and OpenGL ES.

2010: Concept cluster in a Chevrolet Corvette
Next up is the digital cluster in the first QNX technology concept car, based on a Chevrolet Corvette. If the cluster design looks familiar, it should: it’s modeled after the analog cluster that shipped in the 2010-era ‘Vettes. It’s a great example of how a digital instrument cluster can deliver state-of-the-art features, yet still honor the look-and-feel of an established brand. For example, here is the cluster in “standard” mode, showing a tachometer, just as it would in a stock Corvette:



And here it is again, but with something that you definitely wouldn’t find in a 2010 Corvette cluster — an integrated navigation app:



Did you know? The Corvette is the only QNX technology concept car that I ever got to drive.

2013: Concept cluster in a Bentley Continental GT
Next up is the digital cluster for the 2013 QNX technology concept car, based on a Bentley Continental GT. This cluster took the philosophy embodied in the Corvette cluster — honor the brand, but deliver forward-looking features — to the next level.

Are you familiar with the term Trompe-l’œil? It’s a French expression that means “deceive the eye” and it refers to art techniques that make 2D objects appear as if they are 3D objects. It’s a perfect description of the gorgeously realistic virtual gauges we created for the Bentley cluster:



Because it was digital, this cluster could morph itself on the fly. For instance, if you put the Bentley in Drive, the cluster would display a tach, gas gauge, temperature gauge, and turn-by-turn directions — the cluster pulled these directions from the head unit’s navigation system. And if you threw the car into Reverse, the cluster would display a video feed from the car’s backup camera. The cluster also had other tricks up its digital sleeve, such as displaying information from the car’s media player.

Did you know? The Bentley came equipped with a 616 hp W12 engine that could do 0-60 mph in a little over 4 seconds. Which may explain why they never let me drive it.

2014: Concept cluster in a Mercedes CLA45 AMG
Plymouth safety speedometer, c 1939
Up next is the 2014 QNX technology concept car, based on Mercedes CLA45 AMG. But before we look at its cluster, let me tell you about the Plymouth safety speedometer. Designed to curb speeding, it alerted the driver whenever he or she leaned too hard on the gas.

But here’s the thing: the speedometer made its debut in 1939. And given the limitations of 1939 technology, the speedometer couldn’t take driving conditions or the local speed limit into account. So it always displayed the same warnings at the same speeds, no matter what the speed limit.

Connectivity to the rescue! Some modern navigation systems include information on local speed limits. By connecting the CLA45’s concept cluster to the navigation system in the car’s head unit, the QNX team was able to pull this information and display it in real time on the cluster, creating a modern equivalent of Plymouth's 1939 invention.

Look at the image below. You’ll see the local speed limit surrounded by a red circle, alerting the driver that they are breaking the limit. The cluster could also pull other information from the head unit, including turn-by-turn directions, trip information, album art, and other content normally relegated to the center display:



Did you know? Our Mercedes concept car is still alive and well in Germany, and recently made an appearance at the Embedded World conference in Nuremburg.

2015: Concept cluster in a Maserati Quattroporte
Up next is the 2015 QNX technology concept car, based on a Maserati Quattroporte GTS. Like the cluster in the Mercedes, this concept cluster provided speed alerts. But it could also recommend an appropriate speed for upcoming curves and warn of obstacles on the road ahead. It even provided intelligent parking assist to help you back into tight spaces.

Here is the cluster displaying a speed alert:



And here it is again, using input from a LiDAR system to issue a forward collision warning:



Did you know? Engadget selected the “digital mirrors” we created for the Maserati as a finalist for the Best of CES Awards 2015.

2015 and 2016: Concept clusters in QNX reference vehicle
The QNX reference vehicle, based on a Jeep Wrangler, is our go-to vehicle for showcasing the latest capabilities of the QNX CAR Platform for Infotainment. But it also does double-duty as a technology concept vehicle. For instance, in early 2015, we equipped the Jeep with a concept cluster that provides lane departure warnings, collision detection, and curve speed warnings. For instance, in this image, the cluster is recommending that you reduce speed to safely navigate an upcoming curve:



Just in time for CES 2016, the Jeep cluster got another makeover that added crosswalk notifications to the mix:



Did you know? Jeep recently unveiled the Trailcat, a concept Wrangler outfitted with a 707HP Dodge Hellcat engine.

2016: Glass cockpit in a Toyota Highlander
By now, you can see how advances in sensors, navigation databases, and other technologies enable us to integrate more information into a digital instrument cluster, all to keep the driver aware of important events in and around the vehicle. In our 2016 technology concept vehicle, we took the next step and explored what would happen if we did away with an infotainment system altogether and integrated everything — speed, RPM, ADAS alerts, 3D navigation, media control and playback, incoming phone calls, etc. — into a single cluster display.

On the one hand, this approach presented a challenge, because, well… we would be integrating everything into a single display! Things could get busy, fast. On the other hand, this approach presents everything of importance directly in front of the driver, where it is easiest to see. No more glancing over at a centrally mounted head unit.

Simplicity was the watchword. We had to keep distraction to a minimum, and to do that, we focused on two principles: 1) display only the information that the driver currently requires; and 2) use natural language processing as the primary way to control the user interface. That way, drivers can access infotainment content while keeping their hands on the wheel and eyes on the road.

For instance, in the following scenario, the cockpit allows the driver to see several pieces of important information at a glance: a forward-collision warning, an alert that the car is exceeding the local speed limit by 12 mph, and map data with turn-by-turn navigation:



This design also aims to minimize the mental translation, or cognitive processing, needed on the part of the driver. For instance, if you exceed the speed limit, the cluster doesn’t simply show your current speed. It also displays a red line (visible immediately below the 52 mph readout) that gives you an immediately recognizable hint that you are going too fast. The more you exceed the limit, the thicker the red line grows.

The 26262 connection
Today’s digital instrument clusters require hardware and software solutions that can support rich graphics and high-level application environments while also displaying critical information (e.g. engine warning lights, ABS indicators) in a fast and highly reliable fashion. The need to isolate critical from non-critical software functions in the same environment is driving the requirement for ISO 26262 certification of digital clusters.

QNX OS technology, including the QNX OS for Safety, is ideally suited for environments where a combination of infotainment, advanced driver assistance system (ADAS), and safety-related information are displayed. Building a cluster with the ISO 26262 ASIL-D certified QNX OS for Safety can make it simpler to keep software functions isolated from each other and less expensive to certify the end cluster product.

The partner connection
Partnerships are also important. If you had the opportunity to drop by our booth at 2016 CES, you would have seen a “cluster innovation wall” that showcases QNX OS technology integrated with user interface design tools from the industry’s leading cluster software providers, including 3D Incorporated’s REMO HMI Runtime, Crank Software’s Storyboard Suite, DiSTI Corporation’s GL Studio, Elektrobit’s EB GUIDE, HI Corporation’s exbeans UI Conductor, and Rightware’s Kanzi UI software. This pre-integration with a rich choice of partner tools enables our customers to choose the user interface technologies and design approaches that best address their instrument cluster requirements.

For some partner insights on digital cluster design, check out these posts:

“I don’t know where I’m going from here, but I promise it won’t be boring”

Patryk Fournier
The quote is from the now late but great David Bowie and is extremely prophetic when you apply it to autonomous driving. Autonomous driving is very much still uncharted territory. Investments in roadway infrastructures are being made, consumer acceptance is trending positive, and, judging by the news and excitement from CES 2016, the future if anything will not be boring.

CES 2016 stretched into the weekend this year and ICYMI there was a lot of compelling media coverage of QNX and BlackBerry. Here’s a roundup of the most interesting coverage from the weekend:

ARS Technica: QNX demos new acoustic and ADAS technologies
The crew from ARSTechnica filmed a terrific demonstration of the QNX Acoustics Management Platform and the QNX Platform for ADAS. The demonstration highlights the power and versatility of the acoustics platform, including the QNX In-Car Communication module, which allows the driver to effortlessly speak to passengers in the back of the vehicle, over the roar of an engine revving at high speed. The demonstration also showcases how the QNX OS can support augmented reality and heads-up displays:

Huffington Post: CES 2016 Proves The Future Of Driverless Cars Is Promising
Huffington Post highlighted BlackBerry and QNX as key newsmakers for advancements in driverless cars. The article notes QNX’s automotive leadership: “The software is actually installed in 50 per cent of the world’s automotive infotainment systems including Audi, Volkswagen, Ford, GM and Chrysler.”

Crackberry: Inside the QNX Toyota Highlander at CES 2016
The folks at CrackBerry filmed a demonstration of our latest technology concept vehicle, based on a Toyota Highlander. The demo focuses on the QNX In-Car Communication acoustics module, which forms part of the recently launched QNX Acoustics Management Platform:



HERE 360: QNX and HERE bring to life a multi-screen experience in vehicles
A blog post from our ecosystem partner mentions HERE navigation and its use in the Toyota Highlander and Jeep Wrangler technology concept vehicles.

In the zone — a visit to the QNX concept garage

Guest post by QNX consultant and software designer Rob Krten.

How often have you heard the expression, “If it were easy to do, everyone would do it”? I’m constantly amazed at the things that QNX does with their concept cars. To me, a car is an inviolate object that must be touched only by the dealer (well, ok, I do top up the windshield wiper fluid and I once changed a battery). I don’t say that because I necessarily like to give the dealer money, but I just don’t want to break anything that’ll cost me more to get fixed properly later.

Pushing the envelope, however, means getting right in there and doing stuff. QNX engineers have done this for their technology concept cars — from replacing the mirrors with LCD screens, to getting right into the dash and rebuilding it, to adding cameras into the antenna fin on the roof. It’s nothing for them to rip out the center console and then look at all the wiring and go, “Huh, ok — so we need to lengthen this wire, add a shim here, move this piece,” and so on. They are fearless.

Redoing the dash of the QNX
reference vehicle.
Sometimes the “getting right in there” is physical; other times, it’s software based — such as making a new application that lives in the infotainment stack or that interfaces with a smartphone. Like a “Dude, where’s my car?” feature — when your Bluetooth phone unpairs with your car, the phone records the current GPS position. Later, when you’re looking for your car, your phone can recall this last stored GPS position — this must be where you left your car. Or even simple aids, such as a radio tuner that detects when you are losing an AM/FM signal and automatically switches to the corresponding digital station, so you can continue listening to your favorite station anywhere you drive.

Curious to see what the future holds, and to actually see some of this work in action, I invited myself down to the “garage” at QNX headquarters. It’s at the far end of the building, next to the cafeteria. The hallway is festooned with posters of previous QNX concept vehicles, highlighting success stories in 3-foot-high glory.

The day I visited, there were half a dozen people in the garage, and two vehicles: a Jeep and a Highlander (otherwise known as the QNX reference vehicle and QNX technology concept vehicle). The garage is a combination of software development lab, hardware development lab, simulation environment, and actual garage (but without the greasy/oily smell). I wanted to get a sense of what drives these people, what they do, and how they do it.

Digital analogs
No, not that kind of digital 
display. Credit: Peter Halasz
The first thing I learned was that there are no real limits. They have the freedom to innovate, without preconceived notions about how things should look. For example, a lead designer on the team (let’s call him Allan, because that’s his name), explained how they look at the controls in the car’s dash display area. In the era of analog, the speedometer had a certain look — it was usually a needle rotating about a central point, where the needle pointed to the speed you were going. In the very early era of digitization, car manufacturers changed this needle to a seven-segment numerical display.

Of course, this was a failure, because the human brain is basically analog; it likes to see nice, continuous changes for processes that are continuous — such as the speed that you’re going. Seven-segment digits change too “randomly”; they require higher-level cognitive functions to parse what the individual lights mean and convert that into digits, and then convert that into a “speed” (and then convert that into “too slow,” or “just right,” or “too fast,” and then, finally, convert that into “apply brake” or “press down on throttle”).

Allan pointed out that changing to a digital display didn’t necessarily mean that they have to slavishly follow the analog “physical” appearance (except do it on an LCD display), but that they were free to experiment with “fill concepts” — digitally controlled analogs to the actual controls. We likened it to the displays in military avionics, where the most important information becomes bigger as it increases in importance. Consider a fighter jet at 20,000 feet — the altitude isn’t nearly as important as it as at 300 feet. Therefore, at 20,000 feet, the part showing the altitude is small, and in a less prominent position than it is when the plane is at 300 feet. The same thing with your speedometer: if you’re doing the speed limit, it’s not as important to show your current speed (you’re most likely flowing with traffic) as it is when you’re 20 over (or under).

In this image from the new QNX technology concept vehicle, the digital instrument cluster is warning that a
forward collision is imminent, and that the driver is exceeding the speed limit by 12 mph. 

You could do the same thing with your fuel range — when you have a full tank, the indicator can be off in a corner somewhere. But as you start to run low, the indicator can get bigger or more prominent, to start nagging you to refuel. By having the displays all be “virtual” on a large LCD screen in the dash, the designers have incredible flexibility to create systems that present relevant information when required, and have it move out of the way when something more important comes along. (Come to think of it, this would be an awesome feature to have on turn-signal indicators — after you’ve kept your blinker on for more than 10 seconds, it would start to get bigger and brighter. Maybe then people would stop driving with their turn indicator permanently on.)

Collision avoided: The V2X command center
Also in the lab was a huge (3 by 5 foot) flat-panel touchscreen, mounted at an angle that’s aggressively unfriendly to coffee cups (probably for that very reason). It’s reminiscent of Star Trek’s main transporter control station, but it’s used to control and display the simulation environment’s V2V (vehicle to vehicle) and V2I (vehicle to infrastructure) data. It acts as a command center to control and reveal the innards of what’s going on in the simulation environment:



When I was there, we ran a vehicle collision avoidance scenario. Two vehicles (the Jeep and the Highlander, of course — they’re tied in to the system) were heading on a collision course (one was southbound and one was eastbound in a grid-style road system). Because they have V2V capabilities, both cars were aware of their impending doom. This showed up nicely on the V2V command center control panel — two cars heading towards each other, little red circles emanating from them indicating the realtime V2V “pings.” Of course, in plenty of time, the Jeep slowed down to avoid the collision (the actual brake lights even went on!). The speed, GPS coordinates, direction, and even what gear each vehicle was in were all shown on the master console. Towards the end of my visit I almost had Allan convinced to do another master control console for the OBDII connector so you could interact with all of the information in each car. What can I say? I like front panels. (I’m a reformed PDP-8 collector.)

The V2X command center, which makes its debut this week at CES, provides a bird’s eye view of several V2X traffic scenarios. In this example, V2X allows a vehicle (the Jeep) to detect that a vehicle up ahead (the Highlander) has braked suddenly, giving the Jeep plenty of time to slow down.

The engineers in the concept garage are “in the zone.” They’re working in an environment that encourages innovation. Watch and see what they produce:




About Rob
Rob is president of Iron Krten Consulting, which provides technical leadership services, from software leadership consulting through to security and embedded software products, development, training and contract services. Rob is also engaged by QNX Software Systems to write marketing and technical documentation. Visit Rob's website.

The demo is in the details

A new video of the 2015 QNX technology concept car reveals some thoughtful touches.

Paul Leroux
QNX technology concept cars serve a variety of purposes. They demonstrate, for example, how the flexibility of QNX technology can help automakers deliver unique user experiences. They also serve as vehicles — pun fully intended — for showcasing our vision of connected driving. And they explore how thoughtful integration of new technologies can make driving easier and more enjoyable.

It is this thoughtfulness that impresses me most about the cars. It is also the hardest aspect to convey in words and pictures — nothing beats sitting inside one of the cars and experiencing the nuances first hand.

The minute you get behind the wheel, you realize that our concept team is exploring answers to a multitude of questions. For instance, how do you bring more content into a car, without distracting the driver? How do you take types of information previously distributed across two or more screens and integrate them on a single display? How do you combine information about local speed limits with speedometer readouts to promote better driving? How do you make familiar activities, such as using the car radio, simpler and more intuitive? And how much should a car’s UX rely on the touch gestures that have become commonplace on smartphones and tablets?

Okay, enough from me. To see how our 2015 technology concept car, based on a Maserati Quattroporte, addresses these and other questions, check out this new video with my esteemed colleague Justin Moon. Justin does a great job of highlighting many of the nuances I just alluded to:



In just over a month, QNX will unveil a brand new technology concept vehicle. What kinds of questions will it explore? What kinds of answers will it propose? We can’t say too much yet, but stay tuned to this channel and to our CES 2016 microsite.

A low-down look at the QNX concept cars

Paul Leroux
It’s that time of year again. The QNX concept team has set the wheels in motion and started work on a brand new technology concept car, to be unveiled at CES 2016.

The principle behind our technology concept cars is simple in theory, but challenging in practice: Take a stock production vehicle off the dealer’s lot, mod it with new software and hardware, and create user experiences that make driving more connected, more enjoyable, and, in some cases, even safer.

It’s always fun to guess what kind of car the team will modify. But the real story lies in what they do with it. In recent years, they’ve implemented cloud-based diagnostics, engine sound enhancement, traffic sign recognition, collision warnings, speed alerts, natural voice recognition — the list goes on. There’s always a surprise or two, and I intend to keep it that way, so no hints about the new car until CES. ;-)

In the meantime, here is a retrospective of QNX technology concept cars, past and present. It’s #WheelWednesday, so instead of the usual eye candy, I’ve chosen images to suit the occasion. Enjoy.

The Maserati Quattroporte GTS
From the beginning, our technology concept cars have demonstrated how the QNX platform helps auto companies create connected (and compelling) user experiences. The Maserati, however, goes one step further. It shows how QNX can enable a seamless blend of infotainment and ADAS technologies to simplify driving tasks, warn of possible collisions, and enhance driver awareness. The car can even recommend an appropriate speed for upcoming curves. How cool is that?




The Mercedes CLA 45 AMG
By their very nature, technology concept cars have a short shelf life. The Mercedes, however, has defied the odds. It debuted in January 2014, but is still alive and well in Europe, and is about to be whisked off to an event in Dubai. The car features a multi-modal user experience that blends touch, voice, physical buttons, and a multi-function controller, enabling users to interact naturally with infotainment functions. The instrument cluster isn’t too shabby, either. It will even warn you to ease off the gas if you exceed the local speed limit.




The Bentley Continental GT
I dubbed our Bentley the “ultimate show-me car,” partially because that’s exactly what people would ask when you put them behind the wheel. The digital cluster was drop-dead gorgeous, but the head unit was the true pièce de résistance — an elegantly curved 17” high-definition display based on TI’s optical touch technology. And did I mention? The car’s voice rec system spoke with an English accent.




The Porsche 911 Carrera
Have you ever talked to a Porsche? Well, in this case, you could — and it would even talk back. We outfitted our 911 with cloud-based voice recognition (so you could control the nav system using natural language) and text-to-speech (so you could listen to incoming BBMs, emails, and text messages). But my favorite feature was one-touch Bluetooth pairing: you simply touched your phone to an NFC reader in the center console and, hey presto, the phone and car were automatically paired,




The Chevrolet Corvette
I have a confession to make: The Corvette is the only QNX technology concept car that I got to drive around the block. For some unfathomable reason, they never let me drive another one. Which is weird, because I saw the repair bill, and it wasn’t that much. In any case, the Corvette served as the platform for the very first QNX technology concept car, back in 2010. It included a reconfigurable instrument cluster and a smartphone-connected head unit — features that would become slicker and more sophisticated in our subsequent concept vehicles. My favorite feature: the reskinnable UI.




The Jeep Wrangler
Officially, the Wrangler serves as the QNX reference vehicle, demonstrating what the QNX CAR Platform can do out of the box. But it also does double-duty as a concept vehicle, showing how the QNX platform can help developers build leading-edge ADAS solutions. My favorite features: in-dash collision warnings and a fast-booting backup display.



Well, there you have it. In just a few months’ time, we will have the honor of introducing you to a brand new QNX technology concept car. Any guesses as to what the wheels will look like?



If you liked this post, you may also be interested in... The lost concept car photos

Developing safety-critical systems? This book is for you

In-depth volume covers development of systems under the IEC 61508, ISO 26262, EN 50128, and IEC 62304 standards

Paul Leroux
In June, I told you of an upcoming book by my colleague Chris Hobbs, who works as a software safety specialist here at QNX Software Systems. Well, I’m happy to say that the book is now available. It’s called Embedded Software Development for Safety-Critical Systems and it explores design practices for building medical devices, railway control systems, industrial control systems, and, of course, automotive ADAS devices.

The book:
  • covers the development of safety-critical systems under ISO 26262, IEC 61508, EN 50128, and IEC 62304
  • helps developers learn how to justify their work to external auditors
  • discusses the advantages and disadvantages of architectural and design practices recommended in the standards, including replication and diversification, anomaly detection, and so-called “safety bag” systems
  • examines the use of open-source components in safety-critical systems
Interested? I invite to you to visit the CRC Press website, where you can view the full Table of Contents and, of course, order the book.

Looking forward to getting my copy!

One OS, multiple safety applications

The latest version of our certified OS for ADAS systems and digital instrument clusters has a shorter product name — but a longer list of talents.

Paul Leroux
Can you ever deliver a safety-critical product to a customer and call it a day? For that matter, can you deliver any product to a customer and call it a day? These, of course, are rhetorical questions. Responsibility for a product rarely ends when you release it, especially when you add safety to the mix. In that case, it’s a long-term commitment that continues until the last instance of the product is retired from service. Which can take decades.

Mind you, people dedicated to building safety-critical products aren’t prone to sitting on their thumbs. From their perspective, product releases are simply milestones in a process of ongoing diligence and product improvement. For instance, at QNX Software Systems, we subject our OS safety products to continual impact analysis, even after they have been independently certified for use in functional safety systems. If that analysis calls for improved product, then improved product is what we deliver. With a refreshed certificate, of course.

Which brings me to the QNX OS for Safety. It’s a new — and newly certified — release of our field-proven OS safety technology, with a twist. Until now, we had one OS certified to the ISO 26262 standard (for automotive systems) and another certified to the IEC 61508 standard (for general embedded systems). The new release is certified to both of these safety standards and replaces the two existing products in one fell swoop.

So if you no longer see the QNX OS for Automotive Safety listed on the QNX website, not to worry. We’ve simply replaced it with an enhanced version that has a shorter product name and broader platform support — all with the same proven technology under the hood. (My colleague Patryk Fournier has put together an infographic that nicely summarizes the new release; see sidebar).

And if you’re at all surprised that a single OS can be certified to both 61508 and 26262, don’t be. As the infographic suggests, IEC 61508 provides the basis for many market-specific standards, including IEC 62304, EN 5012x, and, of course, ISO 26262.

Learn more about the QNX OS for Safety on the QNX website. And for more information on ISO 26262 and how it affects the design of safety-critical automotive systems, check out these whitepapers:


It seems like only yesterday...

By Megan Alink, Director of Marketing Communications for Automotive

What were you doing on September 14, 1999? It was likely an inauspicious day for most people, but for QNX, the date represented our official entry into the automotive market:


Don’t get me wrong — QNX was no tentative newcomer on the scene. After all, we were marking almost two decades in the embedded software business. QNX OS technology was already powering mission-critical systems for credit card processing, energy generation, healthcare, mail sorting, precision manufacturing, mining, security, and warehouse automation worldwide. (Whew!) But it was time to take that reliability and flexibility to more markets, ones with needs similar to our existing customer base. Enter automotive. (And we did.)

Today, we are pleased to be able to say that QNX software is found in more than 60 million vehicles on the road. In telematics systems like OnStar. In infotainment services like Volkswagen's RNS 850 GPS navigation system and Ford SYNC 3. In the digital instrument clusters of the state-of-the-art Audi TT and Mercedes S-Class Coupé.

60 million is a very big number. Obviously, we wouldn’t have reached this milestone without the support of our Tier 1 customers who build QNX into their systems every day, the 40+ automakers who choose these QNX-based systems, and our ecosystem of automotive partners who enrich our offering with their market-leading innovations. We want to thank all of these companies for the exciting and challenging opportunities they give us. Here’s to the next 60 million!

The A to Z of QNX in cars

Over 26 fast facts, brought to you by the English alphabet

Paul Leroux
A is for Audi, one of the first automakers to use QNX technology in its vehicles. For more than 15 years, Audi has put its trust in QNX, in state-of-the-art systems like the Audi virtual cockpit and the MIB II modular infotainment system. A is also for QNX acoustics software, which enhances hands-free voice communications, eliminates “boom noise” created by fuel-saving techniques, and even helps automakers create signature sounds for their engines.

B is for Bentley, BMW, and Buick, and for their QNX-powered infotainment systems, which include BMW ConnectedDrive and Buick Intellilink.

C is for concept vehicles, including the latest QNX technology concept car, a modded Maserati Quattroporte GTS. The car integrates an array of technologies — including cameras, LiDAR, ultrasonic sensors, and specialized navigation engines — to show how QNX-based ADAS systems can simplify driving tasks, warn of possible collisions, and enhance driver awareness.

D is for the digital instrument clusters in vehicles from Alpha Romeo, Audi, GM, Jaguar, Mercedes-Benz, and Land Rover. These QNX-powered displays can reconfigure themselves on the fly, providing quick, convenient access to turn-by-turn directions, back-up video, incoming phone calls, and a host of other information.

E is for experience. QNX has served the automotive market since the late 1990s, working with car makers and tier one suppliers to create infotainment systems for tens of millions of vehicles. QNX has been at work in safety-critical industrial applications even longer — since the 1980s. This unique pedigree makes QNX perfectly suited for the next generation of in-vehicle systems, which will consolidate infotainment and safety-related functions on a single, cost-effective platform.

F is for Ford, which has chosen the QNX Neutrino OS for its new SYNC 3 infotainment system. The system will debut this summer in the 2016 Ford Escape and Ford Fiesta and will be one of the first infotainment systems to support both Apple CarPlay and Android Auto.

G is for GM and its QNX-based OnStar system, which is now available in almost all of the company’s vehicles. GM also uses QNX OS and acoustics technology in several infotainment systems, including the award-winning Chevy MyLink.

H is for hypervisor. By using the QNX Hypervisor, automotive developers can consolidate multiple OSs onto a single system-on-chip to reduce the cost, size, weight, and power consumption of their designs. The hypervisor can also simplify safety certification efforts by keeping safety-related and non-safety-related software components isolated from each other.

I is for the ISO 26262 standard for functional safety in road vehicles. The QNX OS for Automotive Safety has been certified to this standard, at Automotive Safety Integrity Level D — the highest level achievable. This certification makes the OS suitable for a wide variety of digital clusters, heads-up displays, and ADAS applications, from adaptive cruise control to pedestrian detection.

J is for Jeep. The QNX reference vehicle, based on a Jeep Wrangler, showcases what the QNX CAR Platform for Infotainment can do out of the box. In its latest iteration, the reference vehicle ups the ante with traffic sign detection, lane departure warnings, curve speed warnings, collision avoidance alerts, backup displays, and other ADAS features for enhancing driver awareness.

K is for Kia, which uses QNX technology in the infotainment and connectivity systems for several of its vehicles.

L is for LG, a long-time QNX customer that is using several QNX technologies to develop a new generation of infotainment systems, digital clusters, and ADAS systems for the global automotive market.

M is for Mercedes-Benz, which offers QNX-based infotainment systems in several of its vehicles, including the head unit and digital instrument cluster in the S Class Coupe. M is also for market share: according to IHS Automotive, QNX commands more than 50% of the infotainment software market.

N is for navigation. Thanks to the navigation framework in the QNX CAR Platform, automakers can integrate a rich variety of navigation solutions into their cars.

O is for the over-the-air update solution of the BlackBerry IoT Platform, which will help automakers cut maintenance costs, reduce expensive recalls, improve customer satisfaction, and keep vehicles up to date with compelling new features long after they have rolled off the assembly line.

P is for partnerships. When automotive companies choose QNX, they also tap into an incredibly rich partner ecosystem that provides infotainment apps, smartphone connectivity solutions, navigation engines, automotive processors, voice recognition engines, user interface tools, and other pre-integrated technologies. P is also for Porsche, which uses the QNX Neutrino OS in its head units, and for Porsche 911, which formed the basis of one of the first QNX concept cars.

Q is for the QNX CAR Platform for Infotainment, a comprehensive solution that pre-integrates partner technologies with road-proven QNX software to jump-start customer projects.

R is for the reliability that QNX OS technology brings to advanced driver assistance systems and other safety-related components in the vehicle — the same technology proven in space shuttles, nuclear plants, and medical devices.

S is for the security expertise and solutions that Certicom and QNX bring to automotive systems. S is also for the advanced smartphone integration of the QNX CAR Platform, which allows infotainment systems to support the latest brought-in solutions, such as Apple CarPlay and Android Auto. S is also for the scalability of QNX technology, which allows customers to use a single software platform across all of their product lines, from high-volume economy vehicles to luxury models. And last, but not least, S is for the more than sixty million vehicles worldwide that use QNX technology. (S sure is a busy letter!)

T is for Toyota, which uses QNX technology in infotainment systems like Entune and Touch ‘n’ Go. T is also for tools: using the QNX Momentics Tool Suite, automotive developers can root out subtle bugs and optimize the performance of their sophisticated, multi-core systems.

U is for unified user interface. With QNX, automotive developers can choose from a rich set of user interface technologies, including Qt, HTML5, OpenGL ES, and third-party toolkits. Better yet, they can blend these various technologies on the same display, at the same time, for the ultimate in design flexibility.

V is for the Volkswagen vehicles, including the Touareg, Passat, Polo, Golf, and Golf GTI, that use the QNX Neutrino OS and QNX middleware technology in their infotainment systems.

W is for the QNX Wireless Framework, which brings smartphone-caliber connectivity to infotainment systems, telematics units, and a variety of other embedded devices. The framework abstracts the complexity of modem control, enabling developers to upgrade cellular and Wi-Fi hardware without having to rewrite their applications.

X, Y, and Z are for the 3D navigation solutions and the 3D APIs and partner toolkits supported by the QNX CAR Platform. I could show you many examples of these solutions in action, but my personal favorite is the QNX technology concept car based on a Bentley Continental GT. Because awesome.

Before you go... This post mentions a number of automotive customers, but please don’t consider it a complete list. I would have gotten them all in, but I ran out of letters!

Automotive technology

Automotive

Labels

1904 Columbus 1940 Ford 1964 Worlds Fair 1969 Camaro 1969 Dodge Coronet Super Bee 2014 2016 Sales 2017 The Bad 8 2017 The Good 12 3 wheeler 4 G 407 407 ex2 427 AC Cobra 440 six pack 442 4x 4x4 55 Chevy 57 Chevy 5th wheel AAR abandoned abs abuse by law enforcement AC Cobra Acadian accessories accident Acoustic processing Active noise control (ANC) Acura Acura Reviews adaptive cruise control ADAS Adobe AIR ads adventurers advertising aerodynamics Aircraft engines airlines airplane Airstream Alfa Alfa Romeo Alfa-Romeo All Cars Rankings All SUV Rankings All Vehicle Rankings Alpina Alpine AMBR winner ambulance AMC America's greatest photographers American LaFrance amphib AMX AMX-3 Andorra Andrew Poliak Android Andy Gryc anti lock braking system App World Apps Arab-Supercar area controller Ariel-Nomad ARM-based devices art Art Arfons Art Deco artist Asset management system Aston Martin Aston-Martin atv auction Audi Audi Reviews audio Augmented reality Austin Austin Healey Australia Austria Auto Accident Attorney auto car donate auto car donation Auto Donate Auto Donation California Auto hobby books Auto Sales By Brand auto show Auto Story in Pictures Wednesday auto taxi Autocar automobile automobile donation AUTOMOBILE INSURANCE automobile parts automobile safety system automobule donate Autonomous cars Awards awesome B 29 B 52 BAIC Baja racing Baker banners barn find barn finds barnfind barnfinds Barracuda Barris barum BatBerry Batman Batteries battery beautiful engine Beautiful paint before and after Belgium Bello's belly tanker Bentley Best Sellers Best Selling American Cars Best Selling Cars Best Selling Luxury Best Selling SUVs Best Selling Trucks Best Selling Vehicles bicycle bicycles Big 3 Swap Meet big wheel bike messengers bike rack biofuel biography BlackBerry BlackBerry Radar BlackBerry-QNX blink code blink code checkup blink code error blink code troubleshooting Blog blogs BMW BMW Audi Mercedes Benz Daimler jeep GM toyota Chrysler VW volkswagon nissan infiniti ford unique rare Bntley boardtrack Boats boattail Bonneville book review bookmobile Boss 302 Boss 429 brake brakes braking system Brand Marketshare brass era breedlove Brewster Brian Salisbury Bricklin bridge British Britten brochure Bugatti Buick Bulgaria burnout bus Buses buying selling cash tips money advice BYD c C-type Jag Cadillac Cadillac Reviews Camaro Can Am Canada Canada 2016 Sales Canada All Cars Rankings Canada All SUV Rankings Canada All Vehicle Rankings Canada Auto Sales Canada Auto Sales By Brand Canada Best Sellers Canada Compact Car Sales Canada December 2016 Canada Entry Luxury Car Sales Canada February 2017 Canada January 2017 Canada Large Car Sales Canada Large Luxury Car Sales Canada Large Luxury SUV Sales Canada Large SUV Sales Canada March 2017 Canada Midsize Car Sales Canada Midsize Luxury Car Sales Canada Midsize Luxury SUV Sales Canada Midsize SUV Sales Canada Minivan Sales Canada November 2016 Canada October 2016 Canada Premium Sporty Car Sales Canada September 2016 Canada Small Luxury SUV Sales Canada Small SUV Sales Canada Sporty Car Sales Canada Truck Sales Canada Van Sales Canada Worst Sellers car care car chase scene car clubs car collections car collectors Car Donate car donate california car donation Car Donations California Car or the Future car wash carbs carrozzeria cart caterpillar tracked vehicle CCS celebrities celebrity Certicom CES CESA 2012 CESA 3.0 Chademo Challenger Chaparral Charger Charity Charity auction charity car donation Charity Car Donation Program Charity Car With Your Credit Card cheating Checker Chery Chevelle Chevrolet Chevrolet Reviews Chevy 2 China chopper Christian Sobottka Christie Christmas Chrysler Citroen Citroën classics cleaning clip Cloud connectivity CO2 Cobra Cobra Daytona Coupe Cobra Mustang Cobra Torino COE Cogent collection collector College Colombia commercial common rail direct injection Compact Car Sales companies comparison compliment components components of anti-lock braking system concept Concept car Concept team Connected Car construction Consumer Electronics Show consumers Contest convertible Coronet Corvair corvette Corvettes Costa Rica coupe coventry cragar crash crde crdi Croatia Crosley crossover Cruise 4 Kids crypto cryptography CTS Cuda Cunningham Curtiss Aerocar Custom customer satisfaction cutaway display cycle car Cyclone Cyprus Czech Republic dacia Daihatsu Dan Gurney dart Datsun Daytona ddis DDS dealers Dealership Dean Martin December 2016 Degree delivery truck Delorean Delphi Demon Denmark Derek Kuhn design deuce devices Dick Landy dicor Digital instrument clusters digital spark ignition Diner with car theme direction injection Disney display diy Dodge domain controller Donate Donate A Car Tax Deduction Donate Automobile To Charity Donate Car To Charity Tax Deduction Donate Vehicles To Charity donation donation auto car donation vehicles to charity Doug Newcomb Drag racing drag strip Dragonsnake dragsters DREAM drifting Driven Driver distraction driving assistance drunk driver DS dtsi dual carbs dual engined dualie Ducati dump truck dvla E-type Jag ECC economy ECU Ecuador electric electric car Electric cars electromagnetic brake Elliptic Curve Cryptography EMF Emil Dautovic Endurance racing engine engine accessories Engine sound enhancement engines Entry Luxury Car Sales enzo Erskine Essex estate Estonia etc EUCAR Europe EV Business Case Evel Knievel event experience experiment extreme sports video F1 Factor-Aurelio Factory lightweight Factory race car Fairlane Falcon Fast boot Fast-Charging FCA FCEV February 2017 Ferrari Fiat Fiat Botafogo finance Finland fips fire engine fire fighting fire trucks Firebird Firestone firetrucks Fisker flamejob fleet management Ford ford escort Ford Reviews Fordson tractor Forecasts FOTA found around the neighborhood France Franklin Free Car Donation Freescale french fuel fuel injection fuel injection system Fuel Tanker fuel-cell fun Funny car Futurliner gadgets Galpin Ford game garage garner gas mileage gas stations Gasser Gauges GCBC Awards GCBC Most Popular Geely Gene Winfield General Motors German Germany give your car to charity GM GM MyLink GNX Go cart good news Goodwood Goodyear gourmet food vans GPU Graham Gran Prix Grand National Roadster Show 2017 Grand Sport Corvette Graph Great Wall Motors Greece green Green car Gremlin GT GT 350 GT 40 GT 500 gt40 GTO GTX Gulf race car Gullwing Guy Martin Hands-free systems Harley Harley Davidson hauler Hawaii helicopter hemi hemmings Hennessey Henry J hero Hertz hire Hispano-Suiza historical history HMIs Holden Hollywood Holman Moody Honda Honda Reviews Honda Sales Hong Kong Hood ornaments hood scoops Horizon 2020 horse carriage horse wagon host blog info about auto Hot rods Hot Wheels Housekeeping How To Donate How To Donate A Car For Tax Deduction How To Donate Car To Charity how to donation car to charity HRM HTML5 Hudson Hummer humor humour Humvee Hungary Hupmobile Hurst Hurst SC Rambler hybrid Hybrid cars hydrogen hypervisor Hyundai Hyundai Reviews Ian Roussel Iceland ID4 Car ignition IIoT immitation Impala india Indian Indianapolis industry news infiniti Infiniti Reviews Info infographic informative Infotainment Injury Lawyer Innotrans innova innovation innovative instrument panel insurance intake Intel interior International Harvester Internet of Things Internet radio invitation IoT Ireland iris iris details iris engine details iris technical Isetta Iskenderian Isky Isle of Man ISO 26262 Israel issues Isuzu Italian Italy ITS ITU IVI Jaguar January 2017 Japan Japanese Javelin Jay Leno Jean-François Tarabbia Jeep Jeep Wrangler JLR John D'Agostino John Deere John Wall Justin Moon jv Kaivan Karimi Kandi kawasaki Ken Block Kerry Johnson Kia kids Kim Cairns Kissel Kombi Kroy Zeviar Kurtis La Carrera Panamerica lace paint Lamborghini Lamborghini Revuelto Lancia Land Cruiser Land Rover Land Rover Sales land speed record holder Land-Rover Large Car Sales Large Luxury Car Sales Large Luxury SUV Sales Large SUV Sales Larry Wood LaSalle Latvia launch law enforcement lawnmower laws Le Mans legends Leno Lexus license plates Lidar Life Insurance limited Lincoln Lincoln MKZ Linda Campbell Linda Vaughn links lists Lithuania live Loans Locomobile logging train logging trucks Lola London to Brighton Looking for EV's Los Angeles Lotus lowrider LSR Luxembourg luxury Lyft Lynn Gayowski Mach 1 machine shop Mack Mad Max magazine magazines magic iris mags Malaysia March 2017 Mario Andretti Mark Donohue marketing Marketshare Maserati Matt Watson Maverick Mazda Mazda Reviews MB McLaren mechanic Megan Alink meme Memory Lane Men Micro Mercedes Mercedes Benz Mercedes-Benz Mercer Cobra Mercury Metallica Metro Mexico Miata microkernal Midsize Car Sales Midsize Luxury Car Sales Midsize Luxury SUV Sales Midsize SUV Sales Military Miller race car mini mini bike miniature Minivan Sales MirrorLink mission-critical Mitsubishi Miura MMI Mobile connectivity Mobile World Congress mod top Model Model A model T modifications Momo Monaco Monster Truck Moon Moon eyes Mopar Mopar parts Morgan Morocco morons mot Motor shows motor wheel Motorcycle Motorcycles motorhomes Mouse movie movies mpv Multicore Munsters Muntz muscle cars musclecars museum music video Mustang NAIAS Nancy Young Nascar Nash Navigation naza neglec neglected Netherlands new tv show New York New Zealand news ni Nissan Nissan Reviews Nomad Norway nos nose art Nova November 2016 Nurburgring Object Management group October 2016 off roading offenhauser Oldsmobile OMG Online College OnStar Opel Open source Open standards OpenGL ES option orders original owner Ormond Beach land speed racing pace car Packard Pagani Paige pamphlet panel paint Paris to Peking race parking parts Patryk Fournier Paul Leroux Paul Newman Paul Sykes Pebble Beach pedal car perodua personal Peter McCarthy petrol petroliana Peugeot Phoenix Injury photographer photography pics pictures Pierce Arrow Pike's Peak Pinin Farina pinstriping Pit row Pits Pixar PKI plank road PlayBook Plymouth Point Grey Camera Poland pole wheel police Polysynch Pontiac Porsche Porsche 917 Porsche Carrera Portugal POSIX pre 1930's gas station Premium Sporty Car Sales President of the USA Preview prices prius project prooject Proton prototype PSA Peugeot Citroen public key cryptography Pullman QNX QNX CAR QNX Garage QNX OS Qualcomm quiz quote race cars racing racing. LSR Radar radio Raid Data rail railcars railroad ralliart Rally rallying Ram range rover rant Rapid Transit System advertsing rare Real time Innovations recall recommended shop record setter Red Bull Sports Reference vehicle Reliability Rémi Bastien RemoteLink Renault Renesas Renntransporter rentals REO repair reports resarch research restoration restoration shop review Richard Bishop Ridler Award Winner rims river bank cars road and highway Road Runner roadster Robot OS Robot wars Roewe Roger Penske Rolls Royce Romain Saha Romania ROS Roth RTI RTI Connext rumble seat Russia Ruxton RV Safety Safety systems safety-certified sales Sales By Model Sales Stats samba sampan Saoutchik Satellite satnav Scaglietti scallops Scat Pack SCCA racecar School bus sci-fi Scooter SCORE Baja trucks Scott Pennock Scout sculpture Security sedan segway semi sensor extension cable sensor fusion September 2016 service service repair automotive vehicle car buying selling mission statement blog free broker shay drive locomotive Shelby shifter shop Show cars sidecars signs skateboarding Skoda slicks slingshot dragster Slovakia Slovenia Small Luxury SUV Sales Small SUV Sales Smart Smartphones snow machines snowmobile Soapbox South Africa South Korea Sox and Martin Spain spare tire spark ignition spark plug spark plugs Spatial auditory displays special edition Mustangs Speech interfaces speed limit Speed Record speedfest speedster sports car sports cars Sporty Car Sales spy shots spyker Sri Lanka SS SS/AH Stagecoach Stanley Station Wagon steam locomotive steam powered steam shovel steampunk steering wheel Steve McQueen Stig Stirling Moss Stolen streamliner street cars Street Van studebaker stunt stunts Stutz Stutz Blackhawk Subaru Sunbeam Super Bee Super Stock Superbird Supercar supercharger survey suv Suzuki Sweden Swift Switzerland System development Life Cycle Tablets Tach takeover tank tata tata magic iris tata vehicles tax Tax Deduction For Car Donation taxi taxi cab TCS tdi teardrop technical technology Telematics Telematics Detroit Telematics Update tempo Tempo Matador Terlingua Racing Team Terry Staycer Tesla test testdrive Texas Instruments The Race Of Gentlemen Thomas Bloor thoughts three wheeler Thunderbird ticket Tiger Tim Neil Tina Jeffrey tips tires tool tool kit toolbox tools Top Gear top ten list Torino tour bus tourbus towtruck Toyota Toyota Entune Toyota Reviews tractor trailer train train wreck trains Trans Am transmission Transporter Traval trike Triumph trivia trolley Troy Trepanier truck Truck Sales trucking trucks Tucker turbocharger turbojet turbonique Turkey tv tv cars twin spark type 1 type 2 tyres UAE Uber UK UK Auto Sales UK Best Sellers uk market Ukraine Unimog unique University of Waterloo Unser unusual unveil upgrade US US 2016 Sales US All Cars Rankings US All SUV Rankings US All Vehicle Rankings US Auto Sales US Auto Sales By Brand US Best Sellers US Compact Car Sales US December 2016 US Entry Luxury Car Sales US February 2017 US January 2017 US Large Car Sales US Large Luxury Car Sales US Large Luxury SUV Sales US Large SUV Sales US March 2017 US Midsize Car Sales US Midsize Luxury Car Sales US Midsize Luxury SUV Sales US Midsize SUV Sales US Minivan Sales US Navy US November 2016 US October 2016 US September 2016 US Small Luxury SUV Sales US Small SUV Sales US Sporty Car Sales US Truck Sales US US Auto Sales US Van Sales US Worst Sellers USA used cars V2X van Van Sales vauxhall VeDeCoM Vehicle Donation California Velodyne Vespa Video vintage vintage racing Virtual mechanic Virtualization VOIP Guide Volkswagen Volkswagen Reviews Volkswagen Sales Volvo Von Dutch vote VW VW bug W3C wagon train wall of death washer washer fluid Watson's Webinars website what is donation what is it wheel speed sensor wheelchair White williams Willys windshield washer wing Wireless framework women woodlight headlights Woody work truck working principle of anti-lock braking system workshop World Worst Sellers wreck Wrongful Death WW1 WW2 XK SS Yoram Berholtz Yoshiki Chubachi Z 11 Z-28 Z28 zamboni ZL1 Zotye