Automotive
Until today, I knew nothing about electrochromism — I didn’t even know the word existed! Mind you, I still don’t know that much. But I do know a little, so if you’re in the dark about this phenomenon, let me enlighten you: It’s what allows smart windows to dim automatically in response to bright light.
A full-on technical explanation of electrochromism could fill pages. But in a nutshell, electrochromic glass contains a substance, such as tungsten trioxide, that changes color when you apply a small jolt of electricity to it. Apply a jolt, and the glass goes dark; apply another jolt, and the glass becomes transparent again. Pretty cool, right?
Automakers must think so, because they use this technology to create rear-view and side-view mirrors that dim automatically to reduce glare — just the thing when the &*^%$! driver behind you flips on his high-beams. Using photo sensors, these mirrors measure incoming light; when it becomes too bright, the mirror applies the requisite electrical charge and, voilà, no more fried retinas. (I jest, but in reality, mirror glare can cause retinal blind spots that affect driver reaction time.)
So why am I blabbing about this? Because electrochromic technology highlights a century-old challenge: How do you see what — or who — is behind your car? And how do you do it even in harsh lighting conditions? It’s a hard problem to solve, and it’s been with us ever since Dorothy Levitt, a pioneer of motor racing, counseled women to “hold aloft” a handheld mirror “to see behind while driving.” That was in 1906.
Kludges
For sure, we’ve made progress over the years. But we still fall back on kludges to compensate for the inherent shortcomings of placing a mirror meters away from the back of the vehicle. Consider, for example, the aftermarket wide-angle lenses that you can attach to your rear window — a viable solution for some vehicles, but not terribly useful if you are driving a pickup or fastback.
Small wonder that NHTSA has ruled that, as of May 2018, all vehicles under 10,000 pounds must ship with “rear visibility technology” that expands the driver’s field of view to include a 10x20-foot zone directly behind the vehicle. Every year, backover crashes in the US cause 210 fatalities and 15,000 injuries — many involving children. NHTSA believes that universal deployment of rear-view cameras, which “see” where rear-view mirrors cannot, will help reduce backover fatalities by about a third.
Buick is among the automotive brands that are “pre-complying” with the standard: every 2015 Buick model will ship with a rearview camera. Which, perhaps, is no surprise: the first Buick to sport a rearview camera was the Centurion concept car, which debuted in 1956:
1956 Buick Centurion: You can see the backup camera just above the center tail light.
The Centurion’s backup camera is one of many forward-looking concepts that automakers have demonstrated over the years. As I have discussed in previous posts, many of these ideas took decades to come to market, for the simple reason they were ahead of their time — the technology needed to make them successful was too immature or simply didn’t exist yet.
Giving cameras the (fast) boot
Fortunately, the various technologies that enable rear-view cameras for cars have reached a sufficient level of maturity, miniaturization, and cost effectiveness. Nonetheless, challenges remain. For example, NHTSA specifies that rear-view cameras meet a number of requirements, including image size, response time, linger time (how long the camera remains activated after shifting from reverse), and durability. Many of these requirements are made to order for a platform like the QNX OS, which combines high reliability with very fast bootup and response times. After all, what’s the use of backup camera if it finishes booting *after* you back out of your driveway?
Instrument cluster in QNX technology concept car displaying video from a backup camera.