Automotive
As a driving enthusiast, I have always felt a bit skeptical about the notion of autonomous cars. The reason is simple: I actually enjoy driving and don’t want someone else to do it for me, in this case the car itself.
Recently, however, my skepticism has begun to soften. I am fascinated, for example, by the SARTRE road train project, where a lead vehicle takes responsibility for a platoon of semi-autonomous cars. Also, recent research from the U.S. Highway Loss Data Institute suggests that, when it comes to some driving tasks, ADAS systems can already put many human drivers to shame.
Autonomous drive will become especially important when today’s “always on” generation starts to buy cars in earnest. They will, no doubt, want to consume multimedia and interact through social media even while on the road, and automakers will need to accommodate them.
HMIs with more (and less) distraction
What would this mean for car makers? Among other things, the infotainment system in a self-driving car could offer an HMI mode that gives the driver more freedom to pay attention to non-driving activities. When the car subsequently needs a human driver (for instance, it becomes disconnected from a road train), the infotainment system could disable these features and immediately go back to a less distracting user interface.
Also, driver assist systems — such as those for detecting animals and pedestrians — would need to be integrated with the road train system to decide how to react when, say, a rabbit runs in front of the car. For instance, should the car brake and warn other cars of the fact, or would it be safer to simply keep driving? It will be interesting to follow this initiative and see how the technical and business aspects evolve, and how, for example, the owner of the lead vehicle will be paid.
For another interesting example of research into autonomous drive, check out the BRAiVE project led by the VisLab team at the University of Parma. The BRAiVE project uses a variety of sensors, with a focus on low-cost alternatives that could realistically integrated into in production cars.
Bells and whistles
So what kind of impact could all this have on a company providing automotive software platforms?
There will, I believe, be an increased demand for a platform that could run all of these applications, enabling the advanced use cases while ensuring that critical functions always have enough processor power. And, of course, the platform will have to be reliable. If this same platform could offer all the bells and whistles available in consumer electronics and demanded by younger drivers, the self-driving future might prove to be a bit closer than we think.
By the way, if you’re unfamiliar with the SARTRE road train project, check out this video:
More about Emil
Emil Dautovic is an automotive business development manager at QNX Software Systems, where he is responsible for the European automotive market. Prior to joining QNX, he worked as a business area manager for The Astonishing Tribe (TAT), where he built TAT's automotive business from scratch and helped transform the company into an important player in the automotive HMI field with leading automotive OEMs and tier ones. He has also worked at AU-System (later Teleca and Obigo), where he served as a consultant on GSM base station development and as a sales representative serving mobile phone OEMs and ODMs worldwide. Emil holds an M.Sc. in Electronic Engineering from Lunds Tekniska Högskola.